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SUMMARY

The COH-58C/A composite main rotor blade design is dynamically
similar to the OH-58C/A metal blade in flap and chord modes,

but significantly softer in the torsion mode. The section prop-
erties of the composite blade airfoil section are compared to
those of the existing metal blade shown in Figure 1. The large
decreage in torsional stiffness, GJ, results in a reduction in
first torsional frequency to 3.8. This value is in the range

of Boeing Verzol experience, and is well placed relative to
cther frequencies. Load, stability and blade elastic behavior
effects are predicted to be satisfactory.

A gpar pin wrap concept was selected as the construction method
to achieve root end retention. Although estimated to be more
costly to fabricate than the simple bearing design, the confi-
dence in the inherent safety of this design drove the decision.
Unidirectional Kevlar, which builds up on the leading and trail-
ing edges of the inboard spar, is extended inboard of the pin
to engage the hub latch.

The selected airfoil section shown in Figure 1 is a fiberglass/
Kevlar composite "D" spar. It is a constant 13.16-inch chord,
VR--7 (12%) airfoil section from the inboard transition to 90%
radius. A fiesld-replaceable Estane leading edge is provided
for erosion protection which can also be configured to provide
pneumatic deicing capability. Chordwise balance is attained

by a wedge shaped piece of '"..gh-density radar absorbent ma-
terial, CR~-124, in the nose.

Because of the transparent nature of the blade and the internal
geometry, only a minimum of additional radar treatment may ke
necessary. However, the blade is readily treatable without
geometry changes to whatev :r extent may be deemed warranted by
the increased cost. By treating materials within the basic
configuration, it is felt that an 11 to 15 db reduction in RCS
can be attained.

A 3° washout is added to the basic 10.6° linear twist schedule
from 85% radius. Outboard of the 90% radius, the blade is
tapered {3-1 taper ratio). By restricting the taper to out-
board of 90% radius, stall flutter is avoided. An airfoil
transition also starts at 90% radius, ending at a VR-8 (8%) air-
foil at the tip. It is calculated that this tip treatment in
conjunction with the change to a VR-7 airfoil will result in

a2 5.1% and 6.1% reduction in hover SHP, relative to the man-
dated baseline airfoil and the OH-58 aircraft airfoil, respec-
tively, with insignificant degradation in forward £flight
performance.
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The overall composite blade weight is 92 pounds as compared to
the metal blade weight of 95 pounds. Centrifugal force is un-
¢hanged as the reduced weight occurs in the root end frea.
Because of the centrifugal force restriction, as related to the
ground-air-ground cycle fatigue life of the tie~bar assembly,

h no additional rotor inertia is provided. However, additional
rotor inertia could be provided at the expense of the tie~bar
assembly retirement lifa.

The thick leading Kevlar nose pack provides the capability for
sustaining the specified impact conditions. A ccpper wire inm-
bedded behind the CR-124 material provides the path for ground-
ing lightning. The fiberglass outer skins are the best selec-
tion for moisture resistance and repairability. There is
sufficient distribution of fibers present in the 42% chord "D"
spar to meet the ballistic damage criteria. The teeter weight
pocket will have a 2-pouund capacity. It is planned to carry
1.2 pounds of nominal weight as compared to the existing .8
pound in order to expand the capacity for repairability.

The manufacturing plan inzludes the automatic layup of l-inch
wide prepreg unidirectional fiber tapes, the use of prepreg
broad goods to form cross-ply, and Nomex honeycomb core in

the blade box. The poesibility of a one cook cure was examined
at length, but was not felt to be state-cf-the-art with respect:
to a high-volume manufac:uring process.

The life-cycle cecgt analysis was conducted using the target
$3400/blade recurring cest. This projects a moderate savings
of $6.7 Million dollars with a planned average service life of
10 years, and a $20.9 Million savings with a 15-year service
life. These savings principally result from the large improve~-
ment in reliability and maintainability characteristics with
the composite blades as compared to the existing metal blades.
However, the $3400/blade recurring cost appears to be an un-
attainable target. At a more realistic level of blade recur-
ring cost, a life~cycle cost savings would only be attained
with a 15-year service life or an increased level of utiliza-
tion beyond the projected 13 hours/month.
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PREFACE

This report was prepared by the Boeing Vertol Company under

U.S. Army Contract DAAJ02-77-C-0074. The work was administered
under the direction of the Applied Technology Laboratory, U.S.
Army Research & Technology Laboratories (AVRADCOM), Fort Eustis,
Virginia, with H. K. Reddick Jr. as Project Engineer.

The Boeing Vertol Company Program Manager and Project Engineer
was J. S. Hoffrichter. The Blade Designer was R. T. DeRosa.
Technology support was provided by E. C. Durchlaub, Structures;
M. A. McVeigh, Aerodynamics; M. W. Sheffler, Dynamics; J. D.
Kelly (Boeing Seattle), Radar Reflectivity; J. J. Dougherty,
Reliability and Maintainability; E. T. Keast, Ballistic Sur-
vivability; S. J. Blewitt, Life-Cycle Cost; and D. A.
Richardson, Mechanical Systems. Manufacturing support was
supplied by M. J. Rohner, R. J. Ford and G. H. Guckes.
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This report presents the results of a design study conducted
by the Boeing Vertol Company to replace the existing OH-58 C/A
aluminum main rstor blade with a composite construction blade.
The helicopter thus configured is to be used for an interim
scout helicopter missicn over an approximate l0-year period.
The cesired characteristics of the OH-58 C/A replacement blade
are summarized in Table 1.

The study was divided into two phases, a 2-1/2-month trade
study phase and a 1-1/2-month preliminary design study phase.
In the trade study phase, alternative designs were evaluated
relative to the follcowing parameters:

30%
25%
20%
15%
l1o0%

The priorities of these parameters were established by the
Army Technical representative.
mitted by Boeing Vertcol and subsequently approved by the Army
Following completion of the trade
study and selection of the desired rcot end, outboard and tip
configurations, the preliminary design study was conducted.

The weighting factors were sub-~




TABLE 1. REPLACEMENT ELADE DESIRED CHARACTERISTICS

Compatible with Existing Hub H«rdware

No Degradation in Vibration, Stability, or Flying
Qualities

$3400/Blade (1976 Dollars) - 3000 Blade Buy
3600~Hour Fatigue Life for Specified Mis=zicn Profile
30-Minute Survivability to 23 mm API

1 M? peak and .001 M? Median (+30°) Radar Signature
Deicing Consideration

200,000~-Amp Lightning Strike Capability

1200-Hour (Field Replaceable) Leading Edge (Sand,
Dust, and Rain)

2.5 to -0.5 g Limit Design Load
6% Reduction in SHP in Hover
10% Increase in Rotor Inertia

1-Inch Pine or 0.25-Inch Copper Wire Impact
Capability
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2.0 FINAL BLADE DEFINITION

The details of the OH-58C/A composite blade configuration are
shown in Figures 2 and 3. The blade geometry drawing is con-
densed and shown as Figure 4. The blade is configured at its
root end to attach directly to the OH-58C/A hub without need
of any adaptor devices. The existing 212-inch main rotor
radius is maintained. The blade section is a constanc 13, 1o~
inch chord, VR~7 airfoil (12% thickness ratio) from the in-
board end of the airfoil section to 90% radius. Cutboard of
90%, the blade has a three-to-one chordwise taper and simul-
taneously transitions to a VR-8 airfoil (8% thickness ratio)
at the tip. A 3° twist washout is added to the basic 10.6°
linear twist schedule, starting from 85% radius.

The basic structural materials of the blade are unidirectional
fiberglass and Kevlar, +45° bias fiberglass and Nomex honey-
comb core. The main pin attachment wrap and part of the

upper and lower spar packs are of unidirectional fiberglass.
All of the unidirectional fiberglass fibers present in the
spar packs are continuous around the attachment pin lcop.
Unidirectional Kevlar is used in the upper and lower spar packs
and in the leading and trailing =24ges. The leading- and
trailing-edge Kevlar is extended inboard of the attachment

pin to react chordwise moment agzinst the hub latch. The
inn2r and outer spar wraps and the blade box skin are of +45°
bias fiberglass.

Chopped fiberglass is used as a structural fill in both the
attachment pin area and the outboard blade areas. Outboard,
it is used to retain the teeter balance weignt and as a filler
in the nose of the tip section. A 6-pound density foam is
used in the aft fairing section of the tip.

Preformed tungsten segments ‘form the inertia and tuning weights
located inside the spar, on the leading-edge side, from
Stations 176.75 to 190.8 and 95.4 to 116.6 respectively.

Sweep balance weights, potentially of aluminum, steel or tung-
sten, are attached to studs embedded in the trailing edge of
the inboard blade. A teeter weight pocket is located at
Station 201.5. The pocket has a greater capacity than the
existing pocket in order to expand the capacity for blade re-
pair. The pocket will have a 2~pound ca_acity and carry 1.2
pounds of nominal weight as compared to the current blades

0.8 pound nominal teeter weight.

The leading-edge balance weight is provided by a shaped,
molded piece of CR-124, radar-absorbent materizl, There are
additional potential radar treatments that may be added wich~
out changing spar geometry including lossy fiber treatment of
resing, dielectric coating of _ne honeycomb core, and filling
of the spar cavity with a lightweight polyurethazne/carbon foam.
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A .075-inch~-thick Estane boot extends from Station 26.48 to
within 9 inches of the tip, Station 203.5, for erosion pro-
tection. The 3:1 taper ratio results in an airfoil so small
near the tip that the ug:i of a 0.075-inch~-thick Estane abra-
sion strip is impractical. The Estane would be half the
section thickness at the tip, and any erosion would result in
a significant change in the airfoil cortour. Consequently,
an electroformed nickel nose cap is utilized at the tip. A
nickel tip cover will also be used for erosion protection.
The Estane boot can optionally be configured to provide pneu-
matic deicing capability.

The outboard 18 inches of' the blade is covered with a wire
mesh screen for lightning protection. This area is the most
susceptible to lightning strike as a result of static elec-
tricity buildup. Ground is provided by a 20,000 circular mill
copper wire located in the leading edge of the blade.

A single stainless steel trailing-edge trim tab is provided
at 75% radius. Also, stainless steel abrasion plates are
bonded to the upper and lower surfaces of the fiberglass pin
wraps and to the leading- and trailing-edge surfaces of the
Kevlar at the hub latch.

The blade is coated with both a layer of conductive paint and
a layer of acrylic lacquer. This will provide weathering
protection and facilitate static electricity discharge to
permit proper operation of onboard avionics equipment.
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3.0 TRADE-OFF ANALYSIS

This section presents the rafionale and results of the trade-
off analysis as defined by Task I of the OH-58 aircraft com-
posite main rotor blade preliminary design investigation.

The trade-off analysis was concducted relative to the evalua-
tion parameters of Table 2. The priorities of these param-
eters were established by the Army technical representative.
The weighting factors were then submitted by Boeing Vertol as
part of the plan nf performance and subsequently approved.

TABLE 2. EVALUATION PARAMETERS

1. Life-Cycle Cost 30%
2. Performence 25%
3. R&M 20%
4., Radar Reflectivity 15%
5. Ballistic Survivability 10%

An additional category "technical risk" was proposed by Boeing
Vertol as a trade study parameter, to be used principally in
consideration of differences from the physical properties of
the baseline metal blades. Following discussions with the
Army technical representative, the use of this parameter was
rejected. It was rejected on the basis that changes in physi-
cal properties were acceptable, if necessary, to accomplish
the other design goals and did not in themselves present
technical risks.

The variables of blade chord, twist, and airfoils were ex-
amined in the performance analysis with the objective of at-
taining a 6% reduction in hover SHP with little or no degra-
dation of forward flight performance. The options that were
used to achieve this target were increased twist (or local
tip washout), changes to the airfoil, and chord variation by
tip taper.

Four configurations of blade construction in the airfoil
region were detailed and examined: all-fiberglass, fiber-
glass/kevlar, fiberglass with a stainless steel leading edge,
and graphite/fiberglass. Each was potentially in a "C" or
"D" spar configuration.

Varying methods of root end retention were examined, includ-
ing a simple bearing design and three pin wrap designs. In
conjunction with these variations of pin attachment, the
problem of the bhlade inboard extension required to react
chordwise moment was examined.
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The design of the tip section of the blade is strongly in-
fluenced by the planform taper required for improved hover
performance. An accessible teeter weight pocket and the pro-

vision for bag removal following curing are alsc major con-
siderations.

It is noted that absolute values used in the life-cycle cost
study are rough estimates. 1In this phase of the study,
interest was in a comparative analysis only.

3.1 Outboard Section

3.1.1 Concepts

Four configurations of blade construction, of VR-7 profile,
were detailed and examined, relative to the criteria listed
in Table 3. The specific concepts, each considered as both

a "C" or "D" spar, are:

Ail Fiberglass

Fiberglass with Kevlar Stiffening
Fiberglass with Stainless Steel Nose Cap
Graphite with Fiberglass

3.1.1.1 All Fiberglass

The all fiberglass configuration was quickly eliminated when
it was seen that the stiffness criteria of Table 3 could not

be met without greatly exceeding the existing section weight
of .288 1lb/in.

TABLE 3. STIFFNESS AND FREQUENCY DESIGN CRITERIA

e No Reduction in wCy
e No Degradation in Critical Flap Frequencies
® Keep _atic Droop Less Than 12 Inches

e Keep le > 3.5

® No Increase in Section Weight

3.1.1.2 Fiberglass with Kevlar

The fiberglass/Kevlar candidate (Figure 5) was conceived as

a potential radar treatable configuration. Consistent with
that thinking, it was given an Estane leading edge, which can
include a pneumatic deicing syztem., Instead of the traditional
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nose weight materials, radar absorbent CR-124 material was
used and formed into a favorable shape for radar reflectivity.

The outer skin is of x-ply fiberglass. The leading edge ana
trailing edge each contain packs of unidirectional Kevlar,
Uni-Xevlar is also employed in conjunctiorn with uni-fiberglass
in the upper and lower spar packs. The inner skin and spar
heel are also of fiberglass x-ply. A copper wire is located
behind the CR-124 material for lightning protaction. A 2-
pound Nomex core is utilized in the aft fairing.

Without changing the airfoil construction, this blade is
amenable to considerable development for improved radar

reflectivity. This could include treating of the Kevlar resin,

coating the core material, or even filling the spar with a
lightweight radar absorbent material. The radar benefit of
these treatments can only be assessed quantitatively by test.
The extent of treatment desired vs. the cost of achieving it
can be traded at that time.

'The physical properties of this configuration as compared to
the OH-58C/A blade are shown in Figure 5. The most noticeable
difference is in torsional stiffness, which is reduced from

6.98 to 2.34 x 10% 1b-in.2. The implication of this change
as well as the others will be discussed in Section 3.1.3.

3.1.1.3 Fiberglass w/Stainless Steel Nose Cap

The fiberglass with stainless steel nose cap configuration
(Figure 6) has all fiberylass skins and spar, and only Kevlar
in the trailing edge wedge. The variable thickness stainless
steel nose cap performs the functions of erosion shield, lead-
ing edge balance weight, lightning conductor and contributorv
to the stiffness. An electrical deicing blanket is located
under the nose cap. A 2-pound Nomex core is utilized in the
aft fairing.

The physical properties of this configuration as compared to
the OH-58C/A blade are shown in Figure 6. Scome differences
exist in torsional stiffness (GJ), pitching inertia (I), and
flapwise stiffness (EIyp).

3.1.1.4 Graphite/Fiberglass

The graphite/fiberglass blade configuration, Figure 7, was
designed with the objective of matching all OH-58C/A blade
physical properties. Inner and outer skins are of graphite
cross-ply. The spar consists of graphite and fiberglass uni-
packs, as does the nose block. Only a small quantity of
graphite uni is required in the trailing edge to achieve the
desired chordwise stiffness, and as a result, no ieading edge
weight is needed to attain an acceptable C.G. An Estane
leading edge utilizing a pneumatic deicing system is shown in
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Figure 7; but a thin, stainless steel leading edge of the

same chord coverage, with an electrical deicing system

could be substituted. Since a graphite airfoil is as untreat-
able as a metal airfoil for radar reflectivity, a stainless
steel nrose cap would not further degrade radar reflectivity.

3.1.2 "C" vs "D" Spar

Each of the configurations described could potentially be
constructed as either a "C" or "D" spar. 7The decision was
made to use a "D" spar for the following reasons:

1. The "D" spar presents the possibility of a single
cure manufacturing process, but certainly requires
no more than a two-cure process

2. The core in the "D" spar configuration was less
costly

3. Using a bag to cure the spar, rather than relying
on core backpressure is more dependable

4. We have more experience with "D" spar fabrication

S. A "D" spar presents slightly better ballistic
survivability .

3.1.3 Frequencies, Loads, Vibration and Stability

Table 4 displays the comparative frequencies, and Table 5

the comparative high-speed level flight lcads predicted for
the candidate airfoil secticns as compared to the OH-58C/A
baseline. No sgparate column is presented for the graphite/
glass configuration, since all physical properties are matched
to the baseline. The fixed system hub forces or Table 5 are
the indicator of vibration effects. It is noted that this
comparison assumes no change in root end or tip physical prop-
erties from the existing OH-58C/A blade.

.Both the glass/Kevlar and glass w/S.S. nose cap configurations

have a reduction in flapwise stiffness (EIp) as compared to

the baseline blade. As seen in Table 4, this results in an
increase in static droop(l g deflection)but it dces nothavea sig-
nificant reduction in torsional frequency. First, torsional
frequency (le) is reduced from 6.4 on the baseline blade to

4.22 and 5.€3 on the candidate configurations respectively.
These values are in the range of Boeing Vertol experience:
YUH~61A = 3,7, CH~46E = 5,8, YCH-47D = 4.9, The lower torsional
frequencies are aiso placed satisfactorily relative to any
adverse coupliny effects with other frequencies. Table 5 shows
no impact of pitch link loads (PLL) nor is there a large effect
on live blade twist. Some change in conticl input is antici-
gzg;d, approximately one degree or less of cyclic at the rotor

e




4 The several different composite rotor blade airfoil construc- 1
{ tions being proposed are predicated upon maintaining the same
chord bending dynamic characteristics, nearly the same flap
bending dynamic characteristics, with only a significant
change in the torsional dynamic characteristics from those J
present in the existing OH-58 metal rotor blades. As a result
of this, and because no changes are being proposed in the 1
dynamic characteristics cf the existing OH-58 control system,
drive system, or airframe, the possibility of experiencing
any aeromechanical instability in any flight condition with

TABLE 4. UNCOUPLED FREQUENCIES

Frequencies {/Rev) .
bageline Glass/ 1
(& Graphite- Kevlar/ Steel
Glass) Estane Nose Cap i
Shear Center $CH 25.4 27.1 24.6 i
Center of Gravity $CH 25.9 .25.9 25.6 ;
Dynamic Center of ]
Gravity CH 24.3 24.3 23.9 )
Inertia tb-1n.? | 1.52 x 10° 1.52 x 105 1.52 x 108
Centrifugal Force Lb 38527 38527 38527
1g Deflection in. -8.91 -11.30 -g8,34 i
Collective Mode . i i
w Flap 1 1.160 1.159 1.160 i ‘
2 3.059 3.012 3.050 i q
3 6.455 6.183 6.389 i !
4 10.051 9.611 9.956 i 4
w Chord 1 4.711 4.655 4.796 ! !
2 15.586 15.419 15.836 oL
w Torsion 1 6.248 3.388 5.485 :
Coupled 1 6.432 4.224 5.626
Cyclic Mode ‘
i w Flap 1 1.0 1.0 1.0 :
’ 2 2.553 2.532 2.549 . ‘
3 5.117 4.998 5.091
4 7.499 " 7.155 7.424 ;
w Chord 1 1.299 1.292 1.310
. 2 7.020 §.951 7.125
: - Uncoupled 6.248 3,388 5.485
f - Coupled 6.626 4.123 5.864 -
7
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the proposed rotor blades is considered very impcobable, if
not impossible. This conclusion is based upon the fact that
the aeromechanical instability of a helicopter rotoxr is
largely dictated by the rotor blade chord bending dynamic
characteristics and by an adverse control system cocupling with
the rotor blade chordwise motioans, and neither of thaese items
is being changed.

Further, the rotor blade torsional dynamic characteristics
have been found:- to be 2f no consequence in their effect on
this phenomenon. This insensitivity of the rotor aeromechani-
cal stability characteristics to the rotor blade torsional
dynamics was found in the UTTAS 1/2 scale dynamic model wind
tunnel tests, whose results are reported in Reference 1.

The L-01 Computer Analysis was run to insure that classical
flutter was no* present at rotor speeds up to 309R®M(1l,15 x

NDL) Ly
3.1.4 Outboard Section Trade~Off Analysis

3.1.4.1 Summary

The trade-off analysis of the blade outboard section {0B3},
station 80.0 thru 190.8, was conducted relative to the evalua-
tion parameters of Table 2. Tahle 6 summarizes the resulta

of the analysis. The detailed evaluation methodology follows
this discussion of the results.

The graphite/glass configuration was last in every category.
This reflects the hicher material cost, the lesser cunfidence
in its long-term trouble-£free performance, the anticipated
complexity of repair, and its poor conformability to radar
treatment. :

The fiberglass with a stainless~steel nose cap cunfiguraticn
showed somewhat batter than the fiberglass/Kevlar cenfigura-
tion in all categories except that of radar refiectivity. it
was this radar category, with a very one~sided evaluation,
which predcnainated the other categories and resulted in the
final selection of the fiberglass/Revlar configuration. The
large stainless steel nose cap is virtually untreatable for
improved radar reflectivity and wo.id offer no improvement
over the existing OH-58C/A aluminum blade radar signature.

The life cycle cost analysis favorad the fiberglass w/&.S.nose
cap configuration, but largely as a result of the anticipated

1. MAY 1973 WIND TUNNEL TEST OF A 1/9 SCALE YUH-61A DRYMNAMIC

MODEL FOR AEROELASTIC STABILIYY, Boeing Wertol Company,
D179-10395~1, August 14, 1973.
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high cost of specially tveatingy materials for radar reflec-
tivity. It is doubtful that each of these treatments, in-
crementally, will imprcve radar signature sufficiently to
warrant the use of them all.

TABLE 6. AIRFOlLL SECTION EVALUATION SUMMARY

Ball.
R&M LCC Tol Perf Radar Total
Glass with S.S. 31 31 10 23 5 100
nose cap
Glass/Kevlar 15 26 9 23 31 104
Graphite/Glass 10 26 9 23 5 73
56 83 28 69 41 277

The weighting of R&M in faveor of the glass w/S.S. nose cap
configuration is a function of reliability only and is a re-
flection of the lack of experiznce with such features as the
composite glass/Kevlar spar pack, and the pneumatic deicing
system and the belief that the Estane leading edge will not
give as good erosion performance as does a metal leading edge.
Because of the field replaceability of the Estane leading
edge, the glass/Kevlar configuration is anticzipated to be
better in cverall maintainability

3.1.4.2 Introduction

The key to an effective trade studvy is the development of a
process for multiple criteria decision making. However, until
recently, generally accepted rigorous techniques for optimiza-
tion under multiple objectives have not been available in the
literature. Fortunately,. there is a new form of Decision
Analysis beginning to show up in the Operations Research
Management and Social Science fields. We have used this
methodolegy, which is capable of dealing simply, efficiently,
and practically with the various (sometimes) conflicting ob-
jectives desired of a new OH-58 rotor blade.

In the following paragraphs of this report, we: 1) introduce
the basic principles of the theory underlying our analytical
process of multi-criterion design prioritization; 2) provide
references where the reader can find in-depth justification

of the theory of this process, and prior applications of the

technique; and 3) apply the process to ranking several candi-
date OH-58 blade designs.

3.1.4.3 Muliicriterion Prioritization - Summary of the Theory

Fundamentally, the approach used in this analysis consists of
the identification of the hisrarchical structure undsrlying

37
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our objective (determining the "best" OH-58 blade design from
several candidate designs), using the necessary mathematical

techniques to quantify the importance of the various hierarchi-

cal factors in achieving the objective, and assessing the ef-
fectiveness of each blade design in achieving the overall
objective. Drawing ireavily on recent work on analytical hier-
archies and systems {(References 2, 3, 4), we construct a hier-
archical structure as a model for evaluating alternate blade
designs, and obtain the desired solution in the form of pri-
orities of the factors or criterion involved by the method of
scaling ratiss. To calculate these priorities, we use the
principal eigenvector of a positive, reciprocal, pairwise com-
parison matrix. The relative importance of the elements of
the hierarchy are calculated through the principal eigenvector
solutions of the pairwise comparison matrices.

The following paragraphs introduce the concepts necessary to
an underztanding of the manner in which the OH-58 blade de-
sign trade study was performed.

3.1.4.4 Hierarchies

In its sinplest form, a hierarchy consists of several levels
of related elements, each level of which is dominated by a
neighboring upper level. Furthermore, the proper functioning
of the higher level depends upon the proper functioning of the
subordinate (lower) levels. Thus, the basic value of a hier-
archy as an analytical model is to gather understanding at the
highest level through the investigation of interactions at the
lower levels.

Although the study of hierarchical structures is not new in
the iiterature, the calculating of priorities of interacting
elements in the manner employed in this study is. (A de-
tailed exposition on hierarchical structures and priority
determination can be found in Reference 2.)

Figure 8 displays the hierarchy used in this study for de-
termination of the "best outboard section design" and the
impcrtance of the various factors as calculated later in this
section.

2, Saaty, T.L., A 3CALING METHOD FOR PRIORITIES IN HIERARCHI-
CAL STRUCTURES, Journal of Mathematical Psychology 15,
111-111, 1977.

3. Saaty, T.L., HIERARCHIES AND PRIORITIES -~ EIGENVALUE
ANALYSIS, University of Pennsylvania, 1975.

4. Saaty, T.L. and Khouja, M., A MEASURE OF WORLD INFLUENCE,
Peace Science, June 1976.
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3.1.4.5 Pairwise Comparison Matrices

In the comparison of 2 set of objects or attributes
(denoted Al,...,An) with weights wy, Worewer Wy, (assumed to

helong to a ratio scale), the pairwise comparisons are repre-
sented by a matrix of the following form:

1

Az ) An

Ay
Al l
A = » -
An | wp/wy

wl/w2 LI WI/Wn

1 ..o wz/wn

. -
. -

L 3

Wn/wz s e 1

As can be seen from the elements of the matrix above, A is a

reciprical matrix. That is, for each element aj4 of matrix A,
the element ajj equals the inverse (or reciprocai)

of aij.

The mathematical tractableness of reciprocal matrices is dis-
cussed in detail in Reference 2.

Now, in order to develop pairwise comparison matrices for the

various hierarchic levels displayed in Figure 8, the following

scale of importance has been employed:

IMPORTANCE DEFINITION

EXPLANATION

1l Equal
Importance

3 Weak
Dominance

5 Strong
Dominance

7 Demonstrated
Dominance

9 Absolute
Dominance

2,4,6,8 Intermediate
Vailues

Two attributes contribute identi-
cally to the cbjective

Experience or judgement slightly
favors one attribute over another

Fxperience or judgement strongly
favors one attribute over another

An attribute dominance is
demonstrated in practice

The evidente favoring an attribute
over anuther is affirmed to the
highest possible order

Used when further subdivision
or compromise is needed
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] The numbers used in this scale are absolute rather than ordi-
i nal, and if numbers larger than those appearing in the scale
are needed, clustering methods can be used.

b Using this scale, reciprocal, pairwise comparison matrices
have been developed for each hierarchic level described in
Figure 8. The values contained in the following matrices are
subjective. They represent the results of discussion and
negotiations conducted among members of the Boeing Vertol
Reliability, Maintainability, Manufacturing, and Design Groups.
They represent an aggregate of our best judgement regarding
the relative importance of the various factors impacting the
selection of an optimum blade design.

3.1.4.6 Priority Determination

The five primary factors for evaluating blade designs (R&M,
LCC, Ballistic Tolerance, Performance, Radar Reflectivity)
shown in Figure 8 were considered to be of significant

impact upon the basic owjective of choosing a best blade
design. As such, no factor was considered to exhibit more than
weak dominance (a 2 in the scale described in the section
above) over any other factor.

Furthermore, the basic rank of the factors (their order of
influence upon the objective) was defined by the Army as shown

in Table 7.

TABLE 7. TOP LEVEL PRIORITIES

Factor Priority
(1) R&M .20
(2) LcC .30
: (3) Ballistic Tolerance .10
P (4) Performance .25
X {5) Radar Reflectivity .15
|
%
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The process used to arrive at the comparison values contained

in the matrices is as follows. First, we rank the factors of

a comparison matrix in terms of decreasing impact upon the

higher level factor to which they are subordinate. Next, we

take the factor ranked first and pairwise compare it with

each of the other factors, starting with that factor ranked

lowest and working upwards. In making the comparisons in this

way, we are always comparing a higher valued factor with a

lower valued factor, thus generating ratios on the integer

portion of the scale. Next, we take the factor ranked second

and compare it with all less favored factors in the manner

described above. We continue this process on the 3rd, 4th,

etc., factors until M(M -1)/2 comparisons have been made.

Thic method is of great value when dealing with matrices of

order (M) greater than 2 since we are always creating the

M(M -1)/2 integer values first and then calculating the re- .
maining values by usirg the relationship Aji = l/Aij‘ '

Using the method of principal eigenvectors, the pairwise com-
parison matrices are analyzed and priorities corresponding to
the normalized (summing to unity) eigenvector components are
calculated. These privrities (as shown in Table 7) reflect
the relative importance of each factor upon the objective.

This process of making pairwise comparisons and solving the
compariscn matrix to determine factor priorities was continued
on all the remaining hierarchic groups of Figure 8. Thus,

for example, the relative priority of reliability compared

to maintainability (Reference Table 8) is .80 to .20, repre-
sentative of a position that poor maintainability is not very
important (with reasonable bounds on "poorness") if reliability
is high, and simultaneously, even excellent maintainability
cannot completely compensate for an unreliable design.

TABLE 8. R&M IMPORTANCE DETERMINATION

(1)High R (2)Easy M Priority Importance

(1) High
Reliability 1 4 .30 .16
(2) Easy 1/4 1 .20 .04

i Maintainability

Also shown in Table 8 {and in Figure 8) are values labeled
"importance". The importance of a factor is the product of
the priority of that factor, with the priorities of all higher
level hierarchic elemen*: to which it is subordinate. Thus,
the importance of reliab.lity is .16, which equals the pri-
ority of reliability (.80) times the priority of R&M (.20)
times the priority of the Best OBS design (1.0).

o
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In determining the priorities of the blade parts upon relia-
bility (Table 9), estimates of the failure frequencies for the
various parts (spar, leading edge, etc.) were taken from the
Boeing Vertol CH-46 Fibsrglass Blade Failure Modes and Effects
Analysis (FMEA), rather than using subjective comparisons,
since this data was directly applicable to the kinds of blades
being considered.

TABLE 9. R FACTOR IMPORTANCE DETERMINATION

Blade Part Priority Importance
Spar .023 .004
Leading edge .453 .072
Skin .182 .029
Trailing edge .114 .018
Nomex .023 .004
Deice . 205 .033

Next, each OBS design (fiberglass with a stainless steel nose
cap (labeled X), fiberglass and Kevlar (labeled Y), and graph~
ite/fiberglass (labled %)) was evaluated against each of the
lowest level factors in terms of its reliability impact.

Table 10 displays the pairwise comparisons and relative priori-
ties of each OBS design. The qualitative data which led to
these judyements are contained in Table 11.

A similar analysis was performed to evaluate the maintainabili-
ty characteristics of the OBS designs, and the prisrities and
pairwise comparisons are provided in Tables 12 and 13. Again,
the rationale for the judgements contained in Table 13 can be
found in Table 14.
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TABLE 12. M FACTOR IMPORTANCE DETERMINATION
Blade part Priority Importance
Sper .10 .004
Leading edge .10 .004
Skin .30 .012
‘railing edge .10 .004
Nomex .30 .012
Deice .10 .004

TABLE 13.

PAIRWISE COMPARISONS - M IMPACT
OF GUTBOARD SECTION DESIGN

fgéar, trailing

cdge & nomex X XY Z Priority Skin X Y 2 Priority
X I | 1 .33 X 1 1 5 .45
¥ 1 1 1 .33 Y 1 1 5 .43
2 1 1 1 .33 zZ 1/5 1/5 1 .10
Leading edge
& deice x Y 2 Priority
X = Fiberglass with
X 1 /3 15 -10 stainless~steel nose cap
Y = Glass/Kevlar
¥ 5 1 1 - 43 Z = Graphite/glass
K] 5 1 1 .45
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3.1.4.7 Ballistic Tolerance

Previous analyses and wind tunnel tests had shown that, in
general, a blade which does not separate from the aircraft
due to ballistic damage will continue to be flyable. There-
fore, the blades were evaluated on the basis of whether a hit
by each threat in any position or angle of entry would cause
separation. The ability of a blade to stay intact after
ballistic damage is related to the residual strength of the
damaged area. Basic calculations of residual strength were
made of several marginal cases. It became apparent that all
the concepts were invulnerable to 7.62 mm projectiles in
either the straight or tumbled attitudes. It was also evi-
dent that they would not be vulnerable to straight hits of
12.7 mm rounds. Their vulnerability to tumbled 12.7 mm hits
was not quite so apparent.

Looking at the worst case, a 12.7 mm round, hitting directly
on the blade nose, exactly centered on the chord plane and
perpendicular to it, could provide a condition which might
sever a blade. However, after comparing these blades against
other components Boeing has tested with 12.7 mm tumbled
rounds, it was concluded that such damage, if not impossible,
was unlikely because a tumbled round (1) has lost some of its

energy and (2) tends to turn or glance off the target, causin¢

less destruction. Thus it was felt that all concepts were
virtually invulnerable to this threat, except p ssibly for
such a hit in the last few inches from the tip, which would
not cause a hazardous condition.

In evaluating survivability to 23 mm API, as with the other
threats, only the spar and root areas were considered. The
only types of hit that appeared catastrophic were those which
hit the nose directly and then went completely through the
top or bottom of the spar in a chordwise direction.

It was felt that all blades were the same for the top or
bottom hits, but that the glass with stainless steel (blade
X) was superior to the others for maximum damage chordwise
spar hits. The pairwise comparisons and priorities associ-
ated with ballistic tolerance are contained in Table 15. Top
or bottom hits, and hits in the trailing edge or leading edge
were considered, with 90% assumed tc be top or bottom, and
10% edgewise.

3.1.4.8 Life-Cycle Cost Analysis

In order to evuluate the life-cycle cost (LCC) effectiveness
of the various OBS designs, estima+es were made of the costs
and removal rates associated with each design as follows:
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Nonre¢ .urring - using $50/man~hour, noanrecurring
costs were estimated based on nonrecurring man-
hour estimates made by Boeing Vertol manufacturing
personnel. These values are very rough, but they
are considered to ke correct when used as relative
values from design to design.

Recurring - The recurring cost goal of this program
is $3400/blade. Approximately 70% of the weight of

a blade goes into its OBS. As such, we have set the
recuvrring cost of the OBS judged cheapest at 70% of
$3400 or $2380. The other two designs (Y and Z) were
considered to be approximately 50% and 15% more ex-
pensive, respectively than the X design. It is noted
that the cost of the glass/Kevlar configuration (Y)
includes an estimated $950 of extra material costs
for maximum radar treatment.

Inherent MTBR - It was felt that all three OBS de-
signs were capable of meeting our design objective
of 5000 hours inherent MTBR to higher ievels. Thus,
an MTBR for OBS failures of 5000 hours was estab-
lished for OBS design Z, which was determined to be
the least reliable by analyzing the data contained
in Tables 2 and 10. The MTBR's of OBS X and Y were
then determined by multiplying the MTBR of OBS Z by
the ratio of priorities of OBS X and Y, respectively,
¢o OBS 2.

MTBR - To calculate an operational (or all failuxe
causes) MTBR for each OBS design, a noninherent re-
moval MTBR to higher levels of 5000 hours was added
to the inherent MTER of each of the OBS designs.

Average Repair Cost ~ Historically. biade repair ceosts
at higher levels have run about 30% of acquisition
cost. Assuming $3400 as the acquisition cost, the
blade determined through Tables 12 and 13 tc be nost
maintainable (OBS ¥) was set at & repair cost of 30%
of $3400 or $1000. The repair costs of X and Y were
then calculated by multiplying the repair cost of ¥
?y the ratic of the priorities of X and Z, respective~
y to Y.

Table 16 summarizes the data used in the OBS Life~Cycle Cost
Analysis.

3.1.4.9 Radar Reflectivity

Tabie 17 shows the pairwise comparison and priorities for
radar reflectivity. It should be noted that only design (¥}
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is treatable to enhance reflectivity, and as such its priority
is much higher than the other designs.

TABLE 17. RADAR REFLECTIVITY

X Y Z Priority Importance
L1 1 1/6 1 .125 .019
Y 6 1 6 .750 .112
2| 1 1/6 1 .125 .019

3.1.4.10 Outboard Section Analysis Conclusion

Taking the LCC data of Table 16 and the radar evaluations of
Table 17 and combining them with the R&M and ballistic tol-
erance previously displayed, it is now possible to rank each
OBS based on its composite priority.

In developing this ranking, we have considered all designs as
having the capability for equal perfcrmance. Thus, the .25

importance of performance has been spread evenly over each
design.

The quantitative rating for each design versus each parameter
i~ (R&M, LCC, etc.) calculated by multiplying the priority

for each design versus each factcr times the impertance of
that factor. Thus, for example, the rating of blade X against
R&M is calculated by multiplying the priority of blade X
against cach R&M factor (ref. Tables 1C and 13) times the
importance ~f each R&M factor (ref. Tables 8 and 12).

Table 18 summarizes the priorities for each design versus
each parameter. Design Y (glass/Kevlar) is the preferred
design, but just slightly over ¥ (glass with stainless steel);
design Z (graphite/glass) is a very distant third.

TABLE 18. SUMMARY OF OUTBOARD SECTIOR EVALUATION

Bal.
R&M LCC Tol Pexrf Radar Total
Glass with 8.8. .109 .113 .036 .083 .019 +3€0
nose cap
Glass/Kevlar .056 .092 .032 .083 .112 .375

Graphita/glass .035 .095 .032 .083 .019 .264
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3.2 ROOT END SECTION

3.2.1 Concepts

Four root end retention concepts were examined. These includ-
ed a simple bearing design and three pin wrap designs. {n
conjunction with these variations of pin attachment, four con-
cepts to react chordwise moment were also examined.

———— e —wd

3.2.1.1 Root End Retention

The four methods of blade retention are shown schematically in T
Figures 9 through 12. It is noted that only one method of
chordwise moment reaction, externally bonded graphite pletes,
is shown with all four of the blade retention concepts.

-t

Figure 9 displays the spar pin wrap concept. In this concept,
one-half of the unidirectional fiber of the upper and lowe:r
spar packs are rotated 90°, circle the pin, rotate 90° agaia,
and transcend back into the same upper or lower spar pack from
which it originated. The proprietary design was developed by
Poeing Vertol and was used on the YUH~61A and YCH-47D.

JUPRP I O

The nose wrap concept in Figure 10 is similar to the spar wrap
councept, however, in this concept it is the unidirectional
fiber of the nose block which circles the pin, then rotates
90° to form the unidirectiovnal upper and lower spar packs.

Figure 11 illustrates the simple bearing design. Here, the
thickness of the spar is built up with additional layers of
interleaved material and then a hole is drilled. Loads are

reacted in the bearing with shear~out being the critical failure
mode.

Figure 12 is a pin wrap design utilizing a filament winding
technique. 1In this design, both unidirectional and x-piy fibers
are wrapped around the main attachment pin in the process of
the spar layup operation.

3.2.1.2 Chordwise Moment Reaction

The first design for chord moment reaction utilizing externally
bonded graphite doubler plates is shown in Figures 9 through
12. Figure 13 displays a concept of utilizing a machined
aluminum fitting bonded internally between the spar packs. The
third concept considered was a trapped metal fitting similar

to Pigure 13. The final concept was an internal Revlar ex-
tension of the leading- and trailing~edge epar material as
shown irn Figure 14.

53

e

{
bl




FORE AN) AFT
CLOSURES

UPPER AND
LOWER
e DOUBLERS

UPPER AND LOWER

SPAR PACKS
NOMEX
[féé%%§ CORE
~~ SUPPORT
BLOCK

Figure 9. Spar Wrap Root End Design
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FORE AND
AFT CLOSURES

UPPER AND
LOWER
DOUBLERS

LEADING EDGE

MATERIAL
WRAP-AROUND
I SPZLR PACKS
~ NOMEX
? CORE
MOLDED F.1BER
BLOCK

Figure 10, Nose-Wrap Root End Design
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Figure 12,

LEADING- AND
TRAILING- EDGE
CLOSURES

GRAPHITE
DQUBLERS

FILAMENT

WOUND
SPAR

CORE

MOLDED
BLGCK

Filament Wound Root End Design
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3.2.2 Root End Trade-Off Analysis

i 3.2.2.1 Summary

The selected root end configuration is that of a spar pin

! wrap with the internal integral Kevlar chord moment reaction ‘
extension. The four pin retention concepts were evaluated in

the same format as was the airfoil section. The trade-off

analysis is presented later in this section. The results, as

summarized in Table 19, show little difference in the final

totals. The pin wrap concept was ultimately selected. Al- . 4
though the bearing or punch-through design was judged to be ‘
the least costly to fabricate, the confidence of safety inher-

ent in the pin-wrap design was ultimatelyv the decisive factor.

The nose-wrap design is not suited to the CR-124/Kevlar nose

pack design selected for the airfoil section. Whether the |
spar wrap design of Figure 9 or the filament wound pin-wrap
design of Figure 12 will be utilized is not as yet decided and
will depend on the manufacturing sequence defined for the en-
tire blade in Task II.

Wo formal trade-off analysis was conducted to select the
design for chordwise moment reaction. The external graphite
doubler design was first derived. This design was objection-
able because the doublers also carried all of the flapwise
moment reaction and a large share of the centrifugal force,
all carried thrcough a bond line. In addition, the design was
& pounds heavier than the OH-58C/A metal bhlade and utilized

a considerable guantity of costly and radar relective graph-
ite.

The internal metal fitting of Figure 13 was conceived as a way
of having the inboard extension react chord moment only. How-
evar, there was doubt as to whether the integrity of bond
between the fitting and the spar packs above and below could
ke reliably repsstablie on a production basis.

A trapped intarnal fitting was proposed as an alternative but
wags too reminiscent of 2 coke bottle design which has been
deamed o he undesivable on a production basis in previous
studies. The design concept shown in Figure 14 was conceived
to resolve all these chjections. It was shown to work struc-
turally and was, therefore, selected.

5.2.2.2 ZIntroduction

Bn sanalysiz identical to that displayed in rating the out-
board section design was performed to rank the various root
end designe. As such, the discussion provided in this section
ie brief, ralying on the reader's previously gained familiarity
with ¢the hierarchial process.
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TABLE 19.

ROOT END EVALUATION SUMMARY

BALL.
R&M | LCC TOL. PERF . RADAR | TOTAL
SPAR PACK WRAP
AROUND PIN -A 19 30 11 25 ! 15 100
i
NOSE TO SP2AR
PACK WRAP 19 27 11 25 15 97
AROUND PIN -B
i
PUNCH THROUGH-C 22 31 8 25 . 15 ilcl
FILAMENT WRAP
AROUND PIN ~D 20 32 11 25 15 103
80 120 41 100 60 401

e




i "|

3.2.2.3 Priority Determination

Figure 15 displays the hierarchical structure used for evalu-
ating the various root end designs and the importance of the
various factors. The important factors were derived through
pairwise comparisons as discussed in the OBS analysis. The
priorities for each blade part that resulted from these pair-
wise comparisons are shown in Table 20.

Each of the root end designs was then evaluated from an R&M
viewpoint against each blade part. Tables 21 and 22 display
the qualitiative data used in making the pairwise comparisons
for each root end design against the criteria of R&M. Table
23 shows the quantitative results of these comparisons.

The root end concepts were evaluated in the same manner as the

outboard sections. All were deemed invulnerable to all threats

except the 23 mm API. It was concluded that all the roots
would be vulnerable to 23 mm API hits in the section from the
vertical pin to Station 26.80 and possibly inboard of the pin,
and that the punch through (design C) was slightly worse than
the others due to its higher vulnerable area.

Using the same assumptions discussed in the OBS analysis sec~
tion, the LCC analysis data is displayed in Tables 24 and 25.
As can be seen from this data all designs are relatively close
in LCC.

3.2.2.4 Poot End Section Analysis Conclusions

All root cnd designs were considered to be identical from a
performance and radar reflectivity point of view. As such the
priority of these factors was spread uniformly over each
design.

Table 26 summarizes the ratings for each design against all
the rating criteria. A= can be seen, based on the evaluation
factorg, there is no clear-cut choice. Based on Boeing Vertol
experience with the pin-wrap design and its demonstrated fail-
safety, this design was selected.
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TABLE 20. ROCT END R&M FACTOR PRIORITIES

BLADE PRIORITY
PARTS -
R M
DOUBLER .07 .07
SPAR TO PIN RETENTION .04 | .04
SLEEVE : .15 .17
SPAR TO PIN TRANSITION | .03 .03
CORE .10 .10
CLOSURES .10 .10 g
TRAII.ING EDGE .10 .10
S/S WEAR PLATES - 1.10 .10 ;
ANTI-FRETTING .31 .29 5
{
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TABLE Z2.

OH-58C/A ROOT END MAINTAINABILITY

A

DOUGBLER

SPAR RETENTION
TO PIN

SLEEVE

SPAR-TO~PIN
TRANSITION

BLOCK

CORE

CLOSURES

S/S WEAR PLATES
TRAILING EDGE

ANTI-FRETTING
MATERIAL

® Same in

® Same in

® Same in

® Minor
delams
repair-

able
® Same
e Same
e Same

® Same

o Same

in
in
in

in

in

all cases

all cases

all

¢ Probable e Minor e Probable

cases

scrap

all
all
all

all

all

cases

cases

cases

cases

cases

delams
repair-
able

scrap

LEGEND:

(A) SPAR PACK WRAP AROUND PIN

(B) NOSE TO SPAR PACK WRAP AROUND PIN

(C) PUNCH THROUGH

(D) FILAMENT WRAP AROUND PIN
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TABLE 23.

ROOT END PRIORITIES FOR

RELIABILITY AND MAINTAINABILITY FACTORS

R M R M R M R 2 M
DOUBLER .09 .25]| .09 .25/.55 .25 .27 .25
SPAR TO PIN i
RETENTION .40 .25| .40 .25/.08 .25 .13 .25
. SLEEVE .25 .25 .25 .25/.25 .25 .25 .25
SPAR TO PIN .
 TRANSITION 15 .2 .15 .2 [.23 .4 | .47 .2
. CORE .25 .25 .25 .25|.25 .25 .25 .2%
i CLOSURES .25 .25 .25 .25(.25 .25| .25 .25
PROTECTIVE PLATE | .25 .25 .25 .25|.25 .25 .25 .25
TRAILING EDGE | .25 .25 .25 .25|.25 .25] .25 .25
ANTI-FRETTING | .25 .25 .25 .25|.25 .25]| .25 .25

LEGEND:

(A) SEAR PACK WRAP AROUND PIN

(B) NOSE TO SPAR PACK WRAP AROUND PIR

{C) PUNCH THROUGH

(D) FILAMENT WRAP AROUND PIN
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TABLE 24. ROOT END LCC DATA - INPUT
ROOT NON RECURRING AVERAGE
END RECURRLNG PER REPAIR
DESIGN (MILLION) BLADE MTBR COoSsT
A $3,160,000 1,122 15,000 1,200
B 3,840,000 1,173 15,000 1,200
C 3,240,000 1,020 16,875 1,000
D 3,000,000 1,020 15,625 1,200
TABLE 25, ROOT END LCC DATA - OUTPUT
l i
ROOT i
END i MNOM
DESIGN| RECURRING : RECURRING 0&S TOTAL PRIORITY
i
A $3,366,000 §$3,160,000{$691,200|$7,217,200 .248
B 3,519,000 3,840,000! 691,200 8,050,200 .222
C 3,069,000 3,240,0001 512,000 6,812,000 .263
D 3,060,000 3,000,000 663,552 6,723,552 .267
LEGEND:

{A) SPAR PACK WRAP AROUND PIN

(B) NGSZ TO SPAR PACK WRAP AROUND PIN

(C} PUNCH THROUGH

{D) FILAMENT WRAP ARQUND PIN
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TABLE 26. ROOT END EVALUATION SUMMARY
BAL.
R&M | LCC | TOL. | PERF.| RADAR |TOTAL
(A) SPAR PACK
! WRAP ARCUND .048 | .074 | .027| .062 |.038 |.249
‘ PIN
(E) MNOSE TO SPAR
PACK WRAP .048 | .067 | .027| .062 |.038 |.242
AROUND PIN
(C) PUNCH THROUGH | .054| .079| .019| .062 | .038 |.252
(D) FILAMENT WRAP
ARCUND PIN .050| .080 | .027| .062 |.038 |.257
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3.3 AERCDYNAMIC DESIGHN

This section describes the procvedure used to develog an aerc-
dynamically improved design for the main rotor blades for the
OH-58 heliccpter. The prirary design ohjective was to deter-~
mine a planform, twist and airfoil contour for the blades
which, whepr installed on the OH~58, will yield a 6 -percent re-
dnction in the engine shaft horsepower required to hover at
3200 lb gross weight at 4000 £t and 95°F. Another objective
was that the resulting design should not substantially dearade
the aircraft's forward fl.ight performance.

3.3.1 Design Approach

'The aerodynamic features of the current OH-58 helicopcer main
rotor blade are presented in Fiqure 1i6. The rotor has two
blades of rectangular planform incorporating a 70° leading
edge sweep over the outer 2% of the blade. Blade twist is
~10.6 degrees and the airfoil (constant) is an 11.2% thick,
drooped leading edge, cambered airfoil - a Bell Helicopter
Company proprietary section. Rotor diameter is 35 ft 4 in.
and the airfoil chord is 13 in., giving a geometric solidity
of 0.039.

Because considerations of main rotor/tail rotor clearance pre-
clude increasing the main rotor diameter, only three means for
improving the rotor efficiency remain:

1. employ more efficient airfoil sections

2. alter the twist distribution

change the planform

These must be combired in a suitable way to yield the required
increase in efficiency.

3.3.1.. Review of Factors Affecting Hover Performance

The power absorbed by a hovering rotor is the sum of the in-
duced power, expended in accelerating the air to produce thrust,
and the profile power required to overcome the profile drag of
the blades. Both the induced and the profile power are af-
fected by blade planform, twist and airfoil section.

3.3.1.1.1 1Induced Power

At normal hover thrust levels the induced power accounts for
roughly 80% of the total power required. The greatest power
savings is therefore to be found by minimizing this component.
The blade span loading must be arranged so that the resulting
downwash distribution is as uniform as possible. More pre-
cisely, the distribution of blade circulation (I') must be
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optimized because the downwash depends on the spanwise rate

of change of I'. The circulation is related to the local blade
section lift coefficient, Cy, and chord, ¢, through I' = 1/2
CycQiRx, where Q is the rotor rotational speed, R is the rotor
radius and x is the nondimensional radial distance. There-
fore, since the local C, depends on angle »Hf attack, it is
clear that the correct combination of twist and chord must be
made to achieve a reduction in induced power.

For rectangular planform blades, increasing overall twist gen-
erally improves hover performance. Too much twist, however,
results in unacceptable increases in rotor hub and blade loads
in forward flight. The precise amount of twist that will
yield an improved figure of merit without significantly affect-
ing hub and blade loads depends on the type of rotor (articu-
lated, hingeless cr teetering) and on the blade structural
properties.

Boeing Vertol has conducted a number of analytical and experi-
mental studies on the effects of blade twist. During the de-
velopment of the HLH rotor, wind tunnel tests were made oOn
model rotors with rectangular blades and the same airfoils but
with different twist distributions. It was found theat while
increasing overall linear twist did improve the figure of
merit, no benefit in forward flight 1lift/drag ratic was ob-
tained. However, when only the cuter 13 percent of the blade
was given an increased twist, a higher figure of merit was
achieved together with an improved lift/drag ratio. The test
results clearly showed that the most effective place to in-
crease twisgnis the outer 10 ¢oO 15 percent of the blade.

This result may be qualitatively explained by considering the
twist rejuired to produce uniform downwash (minimum induced
power) and minimum profile power. For minimum induced power
the twist varies inversely with radial cistance, and near the
tip this variation is nearly linear. For minimum profile
power the blade sections must be operated at the angle of at~
tack for best lif¢-~to-drag ratio. For most airfoils this
angle is constant up to about M = 0.4 and thex reduces rapid-
ly as Mach numbeér is increased. Thus the blade must be given
a sharply increased washout as the high mach number (tip)
region is approached.

3.3.1.1.2 Profile Power

The above discussion showed that by varying twist and chord,
induced power can be reduced. Rotor profile power alsc de-

pends strongly on the chord distribution and to a lesser ex-
tent on twist. For a blade of general planform the profiie

power coefficient is given by (for B blades):
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l.0 3
C, = __B f cix) C4(x) x7dx

XC

Here the product of the local chord (¢) and the section drag
coefficient (C,) determines the profile power. If the drag
coefficient weée constant (independent of C,, Reynolds number
and Mach number) then the profile drag woul& be given by:

C C, ¢

P =B d Q=o0.C,/8
°© ¥R Qd

where B is the number of blades

1.0

= 4 /.c(x) x3dx is the equivalent torque-weighted
xc

o)

chord and

0g = BcQ is the torgque-weighted solidity.
TR

Thus, a reduction in the blade chord near the tips reduces the
value of UQ and hence reduces the profile power. Of course

the profile power could also be reduced by cutting down on the
entire blade chord. This is undesirable because a reduced
overall choré increases the average lift coefficient at which
the blade sections must operate to achieve a given thrust.

This in turn increases the lift-dependent component of profile
drag and reduces the range of available thrust before blade
stall cccurs. By reducing the chord only in the tip region,
where the cperating CL's are low and the values of Cd relative-
ly constant, these problems are avoided.

Profile power can also be reduced by replacing the existing
airfoils with sections having lower drag at the same lift
level. The sections must be chosen 80 as v ensure that for-
ward fiight performance is not penalized by premature drag di-
vergence or by an inadequate Cj capability throughout the
Mach number range. rax

The above discussicn has outlined three ways for improving the
hover performance of the OH~58 rotor:

& Incorporate improved airfoils
e« Change the asrodynomic twist
e Shape the tip planform

The follouwing sections present in detail the basis Ior selact-
ing the final design configuration.
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3.2.2 Airfoil Selection

3.3.2.1 Baseline Data

As stated above, the airfoil used on the existing OH-58 heli-
copter is a 11.2% droop nose section. N published data exists
for this section. For the purpose of establishing a common
baseline for evaluation, the Go-.ernment recommended that

Boeing Vertol use section data for the NACA 0012 section
supplied by the Government in the form of a listing for the
Rotorcraft Analysis Program C-8l. In order to determine
approximately the performance of the actual OH-58 airfoil,
Boeing Vertol obtained casts of the airfoil from an OH-58 blade
and estimated the performance using the analysis of Reference

5 for Mach numbers less than 0.7, and the analysis of Reference
& for Mach numbers greater than 0.7.

Based on the performance of both the baseline NACA 0012 data
and the OH-58 cast data, the advanced airfoil sections VR-7

and VR-8, developed by Boeing-Vertol, were selected for eval-
uation as replacement airfoils for the OH-58 rotor. Since the
NACA 0012 data was obtained for a smooth airfoil under test
conditions different from those at which the VR-7 and VR-8 air-
foils were tested, the following correction procedure was de-
veloped (with Government approval) in order to compare per-
formance on a consistent basis.

The NACA 0012 data was obtained from a model with very smooth
surfaces tested i1n a wind tunnel with a turbulence level lower
than the turbulence level of the test environment of the VR
series airfoils. A correction to the 0012 drag levels was
therefore obtained by computing the theoretical drag with free
transition and with transition fixed at 20% choxd. The result-
ing increments in drag are shown in Figure 17 as a function of
angle of attack. The computations were made using the Govern-
ment-owned potential flow/boundary layer interaction analysis
(Reference 5).

3.3.2.2 VR-7 and VR-8 Data

The VR-7 and VR-8 airfoils have been extensively tested
(Reference 7; with chords ranging from 15 inches to 35 inches.

S. Stevens, W.A., Goradia, S.H., and Braden, J.A.. MATHEMATICAL
MODEL FOR TWO-DIMENSIONAL MULTI-COMPONENT AIR.OILS IN
VISCOUS FLOW, NASA CR~-1843, July 1971.

5. Bauer, F., Garabedian, P., Korn, D., and Jameson, A.,
SUPERCRITICAL WING SSCTIONS II, Lecture Notes in Economics
and Mathematical Systems, Volume 108, Springer-Verlag,

New York, 1975.

7. Dadone, L., and M-Mullen, J., HLH/ATC ROTOR SYSTEM TWO-
DIMENSIONAL AIRFOIL TEST, Boeing Vertol Company, D30l1-
10071-1, December 1971.
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Figure 18 presents lift-drag pclars of the VR-7 and VR-8
obtained from this test data compared to the (corrected) ref-
erence (012 airfoil and to the estimated performance of the
OH-58 blade sections. The figure shows, at the average hover
section lift coefficient of 0.6, that the selected airfoils
have lower drag than the reference 0012 airfoil and much lower
drag than the OH~58 section estimates. Figure 19 compares the
drag divergence boundaries of the VR-7 and VR-8 against the
0012. The VR-7 has M values lower than the NACA 0012 but,
by introducing the th?Rner lower camber level VR-8, a distri-
bution of airfoils can be defined with overall performance
better than the NACA 0012. The plot presented in Figure 20
‘hows that at 90% blade radius the VR-7 airfoil should begin
to transition to the VR-8 contour in order to remain below
drag divergence at the conditions shown, while delaying as far
outboard as possible the transition to the thinner VR-8 section.
The value of secticn lift coefficient (0.3} is representative
of 1lift levels occurring on the advancing blade at cruise
speeds.

The maximum lift boundaries of the selected airfoils are com-
pared to the reference airfoil in Figure 21. The VR-7 offers

a substantial imprcvement in stall margin oveér the NACA 0012

at Mach numbers between 0.4 and 0.6. The VR-8 has a lower
maximum 1ift capability at M=0.4 but, since this section will
be used at the tip only, the 1lift capability of the sections
between the tip and *he 90% station (VR-7) will still be better
than the reference airfoil.

Figure 22 shows the zero-lift pitching moment characteristics
of the proposed and reference airfoils and those estimated
from the OH-58 casts. Since the 0012 is a symmetrical air-
foil its pitching moment is zero. The proposed airfoils have
approximately the same level of pitching moment as the OH-58
section. Based on estimates of the pitching moment levels re-
quired by the OH-58 blade sections, a trailing Sdge tab angle
of -3~ was selected for the VR~7 airfoil, and 0~ for the VR-8
section. The effect of -3~ tab angle on thg lift/drag polar
of the VR-7 was calculated from polars at O  tab angle by the
scaling technique described in Reference 8. No tab angle
changes were required for the VR-8.

3.3.3 Selection of Twist and Planform - Parametric Studies

As indicated in Parayraph 3.3.1.1, reductions in the blade
chord near the tips will reduce the torgue-weighted solidity
and hence rotor profile power. 1In order to maintain a satis~
factory operating C{ distribution in the tip area with reduced

8. Dadone, L.U., U,S. ARMY HELICOPTER DATCOM, VOLUME 1 -

AIRFOILS, USAAMRDL CR 76-2, September 1976, AD A033425.
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chord, the angle of attack must be reduced by increasing the
twist (more washout) over this region. A parametric analysis
was therefore made to establish the corrert combination of tip
washout and blade chord reduction that would yield the best
perforgance. The parametric study covered linear tip washout
from 0~ to 4  starting at selected radial stations (0.75 to
0.95) in combination with chord taper (3:1) starting at radial
stations between C.7 and 1.0.

The data were computed using computer program B-92, a lifting
line analysis having a prescribed wake and nonuniform inflow.
The taper ratio of 3:1 was selected based on the results of
Figure 23 where the percentage savings in power due to taper
are shown for various taper ratios and various locations for
the start of taper. The data shows that increasing taper
results in increased savings. However, design and coustruction
considerations effectively limit the allowable taper to 3:1.
Larger values result in thinner tip sections, making it diffi-
cult to accommodate the necessary structure and tip weights.

The selected 3:1 taper is distributed so that the blade 1/4
chord line is straight. This tends to minimize aeroelastic
effects. No advantage in terms of compressibility drag con-
siderations is to be gained by sweeping the tip because of the
low hover tip Mach numbexr at which the OH-58 rotor operates.

The results of the parametric study are presented in Ficures

24 through 26. Figure 24 shows the percentage power savings
using different combinations of taper and washout, with washout
starting at 75% radius. Figures 25 and 26 present the corres-
ponding results for washout starting at 85% and 95% radius.
These data were all computed assuming that the VR-7 section
extended from root to tip. With the VR-8 at the tip, approxi-

mately 0.4% improvement over the plotted values is attained. .

.

The results show that 3 degrees of additional tip washout is
optimum for each radial station at which taper begins. Also
shown in Figure 25 is the effect of increasing the overall
linear twist. It can be seen that this is less effective than
increasing the outboard twist only.

Based on these resuits, an initial design having 3° washout
starting at 85% with 3:1 taper also starting at 85% was se-
lected for further investigation. Analysis of the forward
flight loads and power required showed that tapering from 90%
rather than §5% would be =ore acceptable because rotor stall
was delayed moxe with this configuration. This is discussed E
in Sectioi: 3.4. Tapering from 90% also eased the blade :
structural and manufacturing tasks.
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3.3.4 Source cof the Hover Performance Benefit

At 3200 1b thrust and 4000 ££/95°F, the recommended design
yields, for the isclated rotor, a 5.i% savings in power com-
pared tc the baseline isolated rotor with the NACA 0012 air- -
foil. Figure 27 shows a breakdown of thez powser savings. Ap-~
proximately 52% of the gain is in prcfile power reduction and
48% in induced power. If 100% of the savings were profile
power thiz would mean that blade area was removed without
changing the blade 1ift distribution. Howevex, the combigaticn
of taper and washout also alters the blade 1lift distribution
favorably and hence savings in induced power are also realized.

The source of the improved performance is further shown by
Figures 28 through 33. Figure 28 compares the angle-of-attack
distributions and shows that the proposed design operates at
slightly lcwer angles of attack than the baseline rotor. The
corresponding lift and drag coefficient distributions are pre-
sented in Figures 29 and 30. & comparison of blade pitching
is shown in Figure 31. The improved composite blade operates
with higher lift and lower drag coefficients for the same
thrust than the baseline configuration. In Figures 32, 33, and
34 the running thrust, torgque and torque~to-thrust ratios are
presented. The proposed design moves the loading inboard com-
pared to the baseline rotor. This reduces ‘e maximum veloc~
ities induce by the tip vortex, thereby imuroving blade~to-
blade interference.

Figure 35 compares the overall hover performance of the improved
rotor with the baseline rotor in terms of isolated rotor thrust
coefficient and power coefficient. Noted on the figure is

the estimated operating weight empty of the OH-58 (2449 pounds)
and the maximum weight of 2200 pounds. The reco.mended blade
design shows an improvement at all operatinyg weights of interest.

3.3.5 Performance Comparison With the OH-58 Cast Data

As discussed in Paragraph 3.3.2.1, casts were taken of the air-
f£0il sections of the OH-58 rotor blade and used tc estimate
their aerodynamic characteristics. Figure 36 shows the hover
performance improvement estimated for the recommended design
compared to the existing rotor with the Army~supplied 0012
data and to the rotor with the OH~-58 cast airfoil data. The
figure is in terms of total aircraft shaft horsepower and shows
that a larger performunce increase is realized (6.1% vs.

5.1%) based on tho measured airfoil characteristics since the
OH~58 cast airfoil demonstrate higher drag levels than the
bae-:1in2 00i2 ssction.

3.3.6 Forward Flight Performance and Rotpr Limits

Figure 37 presants OH-~58 forward flight power reguired at a
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gross weight ot 3200 pounds at 4000 ft/95°F. The data reflects
tail rotor and accessory power required. The tail rotor power
and trim requirements were obtained from the C-81 program
using the Government-supplied data on the OH-58 fuselage and
tail rotor. The main rotor power was estimated from the non-
uniform downwash teetering rotor performance program (B-14).
The recommended design shows a small power improvement over
the baseline rotor up to the maximum continucns power speed.
Also shown is the power required for the existing OH~58 as
given in the aircraft specification document !BHC Report No.
206~947-203). Some o>f the differences between the power
levels given in the specification and the calculated values
may be attributable to differences between fuselage drag
levels and also rotor aerodynamic data used in the presznt
calculations and those used in the preparation of the specif-
ication document.

Estimated single-rotor helicopter limits are shown in Figure
38. The Bell teetering rotor limits were obtained from vari-
ous sources. The limits shown are not hard boundaries but are
indicative of the rotor lift levels at which stall can be
expected. Shown on the figure are the operating values of
Cg/cT for the baseline votor and for the improved rotor design
at a'gross weight of 3200 pounds. The recommended rotor,
because of its lower thrust-weighted solidity (g, = 0.039 for
the baseline and 0.0354 for the recommendeZ design), meets

the stall inception boundaries at a slightly lower airspeed
than the baseline rotor. However, the recommended design will

nct substantially reduce the forward fiight performance of the
OH-58.

3.4 TIP SECTION

The design of the tip of the bhlade, cutboard of %0% radius was
driven by the desired increase in hovar pgrformance. The

blade has a 3.1 tgper at 90% radius. A 37 washout is added

to the basic 10.€° linear twist schedule starting at 85% radius.
The airfoil remains a VR-7 to 90% radius transitioning to a
VR-8 airfoil at the blade tip.

The impact of outbcard taper and twist on hub loads and
vibration is shown in Table 27. Moving the start of the taper
location inboard increases hub arm loads (., and M.},

while twist waszhout is predicted as having gﬁ allevlating
effect. The load effacts of hoth these changes are attributed
to a change in ai- ° -ding reaulting in a change in the trailing
vortices. These 1 turn impact the self induced nonuniform
downwash field entered by succeeding blzdes. As shown in
Table 27 neither change appears tc havs a significant effect
on hub vibrationg as indicated by hub loads in the fixed
system. It has been calculated that as much as a 103 increase
in vibratory hub loads can be absorbed by the critical hub
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TABLE 27. EFFECT OF TIP TREATMENT ON BLADE AND HUB LOADS

' 2° TWIST 3° TWIST 3° TWIST
BASELINE -90R .90R .85R

, ST'DY ALT |ST'DY ALT |ST'DY AT |STr'DY ALT

23517 94949 | 23572 90559 | 23603 88221 | 23636 86689
M, (in.-1b) | gg74 9333 | 8250 9065 3037 8923 | 8045 8609

Py (1D) 122 154 123 137| 124 131| 125 127
HUB
Fx (1b) -23.6 1780 | -15.9 1702 | -11.4 1659 | -6.3 1631
Fy (1b) 41.3 1805 | 41.0 1729 40.8 1687 | 40.6 1660
Fz (1b) 3562 268 | 3543 270| 3533 270 | 3284 270
Mz (in.-1b)| 47040 2155 | 47145 2121 | 47206 2094 | 47273 2107
st} -7 43| -89 .21| -.97 .10 -.93 .04
| 3-1 TAPER 3-1 TAPER 3-1 TAPER & 3° TWIST
.85R .90R .90R
SP'DY _ ALT. |ST'DY  AUT. |ST'DY AT,
M., (in.-1b)[23218 129,590 | 23360 115163 |23162 109,380
Mp  (in.=lb) g5 10,521 ) sa4s 9702 7937 9299 | 1op
8
Py (10 72 180 o4 135 98 135 | H3200
- A/S=113 KT
——" ALT=4000 FT
Fx {(1b) -36.1 2454 |-29.1  2175[-19.9 2070 | TEMP=95°F
Fy (1b) 36.9 249 M 2210| 33.9 2107
Fz (1b) 3554 182 | 3853 24| 3530 25
Mz (in.-1b)| 46303 1932 |46720 1977|4635 18
sttt -4 .67 | -.60  .126| -.88 .25

(1) Blade tip with respect to 4.5% radius.
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grip without degrading the calculated retirement life to
below 5000 hours. Consequently, the proposed outboard tip
configuration is acceptable.

The loads of Table 27 are predicated on avoiding stall flutter.
Figure 39 shows the effect of the inboard start of blade

taper on power required (nondimensionalized to power required
with a taper) as predicted by the C-60 Program. Two curves
are presented, one blade having the torsional stiffness of

the existing OH-58 C/A blade and a second with the softer
torsional stiffness of the replacement blade. The sharp break
in the trends is iadicative of the onset of stall flutter
resulting from the higher blade lift coefficient as a conse-
quence of the reduction in blade tip area. The softer blade
has better stall flutter characteristics, which is consistent
with our wind tunnel experience. Stall fiutter is avoided by
restricting the taper area to outbhoard of 90% radius with the
torsionally softer blade.

Although a 10% increase in rotor inertia is desired, any
increase in blade centrifugal force will degrade the fatigue
life of the tie bar assembly currently set at 2400 hours. A
substantial reduction in airfoil section weight is not feasi-
able. Consequently, weight cannot be redistributed to the tip
to achieve increased inertia with no increase in centrifugal
force. A review of the fatigue life calculation of the criti-
cal component of the tie bar assembly shows that a 5% increase
in centrifugal force (7% inertia increase) will reduce the
life from the current 2400 hours to 2000 hours. Although it
was decided not to degrade the component life of the tie bar,
this could be reversed depending on how much the inertia
increase is desired.
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4.0 DETAILS OF FINAL BLADE DESIGN
4.1 MANUFACTURING PLAN

The deczign of the OH-58 Composite Rotor Blade has been
reviewed by Tool Design and Manufacturing Technology for
feasibility of fabrication and the identification of a
related tocliag string.

Based on Boeing Vertol's past experience, the 0H~58 rotor
blade fabrication will consist of twc major cure cycles:

(1) the spar assembly, and (2) the final assembly which
includes the cured spar, the uncured fairing skins, the
machined core, and the uncursd trailing-edge wedge. The
two-cure process permits a thorsugh inspection of the spar,
less complex tooling, and less risk of major rejections, than
a single-cure process approach. It is noted that there are
no hard-to~hard surface bonds in the two-cure process.

The cGesign of the rotor biade components is conducive to the
use of pre-impregnated tapes, rather than pre-impregnated
roving, or the "wet" filament winding process. Pre-impresgnated
tapes permit accurate and repeatable orientation of unifibers,
with excellent control of the resin-to-glass ratio. It is
planned to utilize l-inch-wide tapes which will be positioned
by the automated layvup machine.

A1l cross-ply material will be purchased a2 wide goods and
cut to tla -lesired shapes. Thig approach is more cost effec~-
tive than laying up cross ply compoenents with a tape layup
machine when the N/C programming and handling problems are
considered.

FPilament windirg of the sgpar cutexr torsion wrap would reguire
manufacturing devalcpment. There sre problems related to
holding the spar straps and f£iilers in their proper pusition
ocn an extremely fiexible mandrel during the winding process
and there could be a significant probles in fitting a fila-
ment-wound spar assembly into the curing mold. Fllament
winding the suter torsion wrap over the preassembled uncured
spar strap and fiiler assembly would result in a variable
periphery of the outer layer of filaments due to geometric
differences ir the spar strap and filler assambliag. Davia-
tions from the exact periphery of the outermost windirng
relative to the curing mold wauld resuylt in buckled fibers
or 3 bridging effust. Neither of these conditions would be
acceptaile in a rotor blade spar.

A Momex core was selected over a foam ctre. In addition to
the weight penalty asscocicted with a foam core, Boeing
Vertol'zs sxperience indicatas that & machiined Nomex core pre-
sents lenz prokiems in produciag a satigfactory bond tt the
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skin. ‘".:* honeycomb core will be machined to net size priocr
to bond .. y.

The fabrication process for the blade utilizes avtomated tape
layup for components which are made up of unidirectional fi-
bers. The wnose block, layed up of unidirectional fibers, will
be coined to produce a geometry compatible with engineering
requirements and tl.2 molding prccess. In some instances, mul-
tiple widchs may be layed up to reduce layup time, fcliliowed by
a +'itting operation to produce the final width.

7he «ow. 2nd of the blade will be fabricated by assembly of
pro.iar:ly layed u- components. Upper and lower spar halves
wi. . -2 assembled on a layup mandrel. These subassemblies
wii. consist of the spar straps, which will fit arocund a root
end pin, the leading &ad trailing edge compacted membersg,
droop stop, and various fillers. The upper and lower spar
assemblies will be positioned on an inflatable mandrel which
contains the inner torsion wrap. The premolded chopped

fihzr filler blocks and the extended leading and trailing
edges will be fitted. The outer c:orsion wraps including the
tapered fairing at the root end w.ll be positioned. This
assembly will be installed in the spar bonding tool fer curing.
The root end hole will be molded to net size ucilizing an
expandable pin.

Cross ply components such as inner and outer spar torsion
wraps, and the fairing skins will be fabricated from purchased
cross ply material which will be cut to shape via steel rule
dies and the clicker press.

To permit bag removal followiny the blade cure, the outboard
9 inches of the blade will be separately formed, cured, and
permanently bonded to the main spar section. The tip section
will be precured in matched metal molds. The nickel exosion
caps will be bonded to the tip cover during the cure gycle.
The filler will be foamed in place after curse. Trimming and
drilling will be acconplished after cure and foaming to
coordinate with the matching section of the blade.

The curing of the assemblies wiil be accompglished in matched
steel molds to provide the optimum conditions for long depend-
able service, and repeatability in the rotor blada geometry.
These molds, with airfoil contours, will be machined to
engineering dimensions by numerical control. Subassembly or
component tools, will be made of suitable material to meet
shop reguiraments for repeatability, ence of handling, and
minimus maintenance. The maln bonding tools will be heated,
conled, znd pressurized in piaten presses which use oil for
heating o224 water for cooling. Thin £ilm wlastic bags will bw
usad to apply prassure to the spar area.
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All cure cycles will be accomplished in accordance with Beceing
documents for composite structures. The 250°F cure resin sys-
tem utilized in this blade will be brought from room tempera-
ture to 250°F at a cortrolled rate and held for 120 minutes.
The platens will be {cice cooled until the cured assembly
reaches a temperatur> ot 150°F. At that point the moclds may
be opened and the assombly removed. The cure cycle will be
reccrded ana vn+ained for each rotor blade.

Other final fabr.caticn steps include filament winding of the
inboard chordwise -~action plates, boring at the vertical pin
location and bonding installatisn of the fiberglass sleevs,
bonding of the Estane koot and trim tab, installation cf the
teeter weight canister, the studs to retain tiue sweep balance
weights, and wear piates and painting. The use of non-product
materials, such as peel ply, will be discouraged. Their use
will have to be justified from both technical and economic
viewpoints.

A general flow chart and sketches of the tooling is shown as
Figure 40.

4.2 RELIABILITY AND MAINTAINABILITY

Table 28 represents our best estimate of the OH-58 C/A blade's
unscheduled maintenance reliability. The rates on the table
are based on inherent failures only. In order to predict

the total MTBF for all failures, inherent plus externally
caused, the raesults of previcus blade studies were utilized.
These studies, made for the UTTAS and the CH~47 fiberglezss
blade programs. showed that approximately 30% of all blade
removals are for inherent causes. Due to the similarity of
the OH~58 /B fiberglass blade and the similarities of mission
environments of the 0OH-58 C/A and UTTAS aircraft, it was
estimated that 30% of the (4-58 C/A blade failured would

alse be inherent and the remaining 70% would be due tc erternal
causes such as maintenance damage, excessive FOD, erromeous
removal during troubleshooting minor accidents and inciden-s,
etec.

The detail rates were derived by compariug the physical char-
acteristics of the OH~58 C/A blade with those of existing
Boeing-~Vartol blades having similar physical characteristics
and with which we have had considerable flight and ground test
experience, including:

a. CH-46F Metal spar production blades.

b. UN~61A Fiberglass spar blade (8,000 blade £flight housrs,
6,000 blade ground test hours)

c. CH~-47 B/C Metsl spar productisn blade.
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SEC. X-X
LAYUP MANDREL- 4

UPPER/LOWER
VENDOR SUPPLIED DETAILS
TYP.
' e CAST CR124
ggg%%NGULAR e TUNGSTEN TUNING WEIGHT q

o TUNGSTEN INERTIA WEIGHT

.

AUTOMATED LAYUP MACHINE ]
{RECTANGULAR PACKS R 1
FOR ALL DETAIL PARTS) PRESSURE }§

SPAR HALF\} & MANDREL
LOWER '

- / ] D)
|
%CKER DIE . UPPER MANDREL  LOWER MANDREL |
K DETALLS - \ |
; TYP ASSEMBLY TOOL N 3
| N\ ESEa | sECTION VIEW (FLIP~FLOP)
NN COMPACTION TOCY

COMPACTION TOOL-ROOT ENMD DROOP STOP
SHOWN AND ALL CCINED PARTS-FILLERS,
NOSE BLOCK

P i

{

BONDING FIXTUKE- SPAR ASSEMBLY

LAYUP MANDREL~ OU'TBORRD HEEL

Figure 40. Manufacturing Plan Flow Chart
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d. CH-46E Fiberglass spar blade (6,000 blade flight zours).

e. HLH Fiberglass spar blade (1,000 blade ground test hours).

The following describes the Reliability and Maintainability

characteristics of the OH-58 C/A blade as outlined in Table
28.

4.2.1 FRoot End

The root end of the blade carries the centrifugal force loads
and most of the flap moment through the single-blade retaininq
pin. This pin also reacts chordwise moments together with

the inboard clamp connection to the hub. Therefore, the
composite sleeve around the root pin is subjected to a variety
of steady and alternating loads. The inherent MTBF projections
for the composite sleeve and the wraparound “oot material that
go with it have been developed as a result of extensive ground
and flight experience with HLH and CH-46 fiberglass blade roots.
There is the possibility of eventual wear and/or distortion of
the sleeve or of damage resulting from improper removal or

installation. The sleevaz can be readily replaced by drilling
out the damaged sleeve and bonding in a new one.

The stainless steel wear plates at the top and bottom of the
root section protect the fiberglass from abrasion. They
could fret, wear, debond, or be damaged by improper removal

or replacement of the blade or pin. These plates are readily
replaceable with simple tools.

The lag bearing plates are subject to some rubbing and wear.
Such occurrences should be rare but, if they occur, they can

be corrected by tightening the screw adjustment or by replacing
the plates.

It is possible that minor debonding or delamination could
occur at the rcot. Based on experience with several composite
blades, it is anticipated that most debond/delamination type
failures can be handled on the aircraft or at the AVIM level.

4.2.2 Spar

Debonding and/or delamination of the spar has been rare in
Boeing Vertol composite blades, Visual examination will show
any significant delamination on the exterior which can gen-
erally be repaired on the aircraft. It is our experience
that internal bonds or delaminations are unlikely to occur

on this type of blade. Such failures would be slow to
oropagate and would eventually show as surface delamination
prior to loss of load carrying capacity.

Blades in which the spar is damaged by foreign objects or
small caliber ballistic hits will probably not require
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structural repair to restore their original strength. It is
anticipated that such damage will be treated only to prevent
damage propagation, to provide proper aerodynamic character-
istics, and to seal out the elements. This spar is designed
primarily to meet stiffness requirements and can lose some of
its strength locally without causing life limitation, although
this would have to be proved by structural testing of damaged

blades. Such spar repairs would be made on the aircraft or at
AVIM level.

The tungsten inertia weight at the blade tip and the tuning
weight near midspan will be made in short segments to prevent
their picking up excessive loads and breaking.. This may also
be desirable with the CR-~124 radar absorber material. The
inertia weight at the tip is failsafe because it is retained
in an area of the spar which is decreasing in cross section
as it goesg outboard and would therefore be retained by the
wedging action. The inboard tuning weight will be retained
by a mechanical dam at its outboard end.

Regarding the nose cap, tests conducted by Kaman/Goodrich

and Fort Rucker indicate that Estane is superior to most
metals with respect to sand erosion but inferior in rain
erosion. However, Estane only deteriorates rapidly in
extremely heavy rain which would be likely to prevent flight
for other reasons. It is suggested that an R&D program should
be conducted on the Estane to assure the achievement of the
minimum 1200 hour life required.

The only truly proven method of rotor deicing is the electro-
thermal system. The Estane/pneumatic system should be a part
of the recommended R&D program. This deicing system can fail
as a consequence of air leaks. Loss of suction during non-
deicing operation could cause a loss of aerodynamic performance
by degrading the airfoil shape at the noge. Also, during
deicing operations, a leak in one of the spanwise air passages
could cause that passage to become inoperative and decrease

the effectiveness of the entire blanket. Leaks could generally
be repaired by applying a urethane putty while the blade is

on the aircraft. Complete removal and replacement of Estane
nose cover would be made at the AVIM level.

4.2.3 Aft Fairing

Fiberglass skins have proved to be generally superior to metal.
Fiberglass skine, removed from CH-47 blades after several

years of operation and exposure in Viet Nam, were tested for
ultimate and fatigue strength. They were found to have virtu-
ally the same strength as when new. Although delamination and
debonding from the honeycomb, spar or trailing edge could occur,
most of these could be repaired on the aircraft.

A . -l s




s A0 o

o
o
v

T Ty —p—— TP

| |
o [}

The Nomex honeycomb is an especially appropriate material for
this blade. It does not corrode as aluminum can. It bonds
well to fiberglass skin without the possibility of damaging the
skin during manufacturing. Its moisture absorption rate is
minimal, and any absorption that does occur is mostly from the
edges that are sealed by bonds. Inherent failures cof Nomex
honeycomb are extremely unlikely. Additionally, tests have
shown that the impact resistance of fiberglass skin, together
with Nomex honeycomb, is far superior to that of aluminum skin
with aluminum honeycomb.

Damage to the aft section will generally be externally

caused and may affect only the fiberglass skin or both the

skin and the nomex honeycomb. Repair development programs
conducted by Boeing for the CH-46 Fiberglass Blade Program

and by other companies have shown that this type of construction
is particularly suited to quick and easy field repairs, which
may be made without removal from the aircraft.

Damage to the skin only can be repaired by routing the

damaged layer of skin from the honeycomb. The router is set
for the depth of the skin and the size of the hole is
determined by a metal template taped or otherwise fastened

to the blade (Figure 41). This provides a clean area of
honeycomb onto which a skin patch (which could come in

standard sizes, Figure 42) can be bonded with EA $309.3 adhesive
or equivalent. In order tc properly and guickly cure the bond
a clamp device (Figure 43) has been developed which inflates
to apply even, controlled pressure to the patch and is
electrically heated to reduce the cure time. The edges of the
patch are then faired in by carefully sanding around the edges.
Curing could also be accomplished by vacuum bagging to apply
pressure and allowing more time for an ambient temperature
cure.

In the event of small holes, including through holes such as
bullet holes (Figure 44), it is only necessary to repair the
skin (nct the honeycomb). Again, the patches ace faired in by
carefully sanding around the edges.

Where bi.th skin and core damage exist over larger areas, but
not totally through the blade, the same routing technigue

is used as previously described for the skin. In this case,
however, the router is set to a depth sufficient to remove

all the damaged honeycomb (Figure 45). A section of gkin
material, the diameter of the hole, is then bonded on both
sides and placed on top of the remaining honeycomb. After
that, a standard plug (Figure 46) is insarted with bond between
the blade skin and the plug skin and arcund the honeycomb.

This repair is cured in a manner similar to the skin repair.
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Figure 43.
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PRESSURE/HEAT PACK IN PLACE

PRESSURE/HEAT PACK SECURED
Application of the Pressure/Heat Pack
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Where damage areas exist that are both large and deep, a
repair is made as shown in Figure 47. Either the upper or
lower side may be routed out first (in Figure 47 the upper
was done first). A bonded piece ¢f skin is placed on the
honeycomb and a plug patch installad as described above.
After this has cured, the damaged area is routed cut from the
bottom and the process repeated.

4.2.4 Trailing Edge

Inherent fsilures of trailing-edge joints can result from
debonding or delaminating. These are low-frequency failures
that can generally be repaired on the aircraft. The trail-
ing edge is also subject to damage from handling and F.0.D.,
which can usually be handled at the AVUM or AVIM level.

The trim tabs could fail by cracking or debonding. Minor
cracks can be stop drilled and/or smcothed out. Major cracks
require replacement nf the tabs. All of this work can be
done on the aircraft. Figure 48 shows a simple clamping
method to apply pressure for repairing the bond or replacing
a trim tab. The OH-58 C/A tabs will be adjustable in the
field to improve tracking in forward flight.

4.2.5 Tip End

The teeter baiance weights have a low inherent failure rate.
They are installed at the factory and are only adjusted

in the field 1if a blade is repaired such that its weight
changes. They are contained by a rigid metal carnister
which i8, in turn, mounted in the blade spar in a slurry of
chopped fiber/epoxy material. In the unlikely event that
the canistexr comes loose, it could be rebonded in the same
hole. Other failures could be caused by cracking of the
metal covar or loosenirig of the retaining screws. Bot:

0of these are readily detectabie at preflight inspection.

The tip fitting structure is separately made and bonded
onto the blade. It is compriged cof fiberglass skin filled
with chopped fiber material in the ncse and feam in the

aft section. Its mogt likely failure modes would be debond-
ing of the trailing edge or debomding where it is jocined to
the main section of the blade. Both of these are readily
detectable during routine inspection and repairable on the
aircraft or at the AVIM iavel,

The tip cover is the small, flanged nickel cover over the ex-
treme tip. The corner is securely bkonded to the fibarglass
skin and the chopped fiber and foam filler meterisl. Its in-
heraat failure mcodes coculd bs debonding or oracking. it is

z139 susceptible %o ercsion ard forelgn cbjective damage. The

tip cover would be repairable or replaceable on the aircraft.
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The nickxel erossion nouse cap on the tip section could debend
or crack and is aisc susceptible to erosion and foreign
opiect damage. This nose cap will be replaceable either at
organizational or intermediate repair levels.

4.2.6 Hardware and Balance Weights

Phis biade has a minimvm of both hardware and balance weights.
The outboard teeter baiance weight assembly has already been
described. Additional weights for chordwise sweep balance

are located at ths aft end of the root transition area. These
are retained by three studs kended into the trailing edge.
This prcvides fail safety in that any two of the three studs
could carry the loads. Any loosening of these studs would

be readily detectakle in routine inspection.

4.3 LIFE~-CYCLE COST

‘this section of the report presents the direct operating costs
over the life cycle for the OH-58 fleet operating with the
present metal blade, and with the proposed composite blade.
Inzluded in the andiysis are the investment nonrecurring costs
and investment recurring costs for the composite blade.
Several alternative operating scenarios are shown to examine
the effects of different composite blade incorporation policies,
different life cycles, various predicted blade scrap rates,
and various aircraft utilizations. The results show that

in all cuses tested, incorporation of composite bladesg on

the GH~58 fileet is cost-effective.

4.3.1 The PIPE Model

The technique chosen for performance of the cost analysig was
the Product Improvement Program Evaluation {PIPE) Model.

This model was developred for the Army, and is documented in
Reference 9. The method compares a baseline component
configuration with an alternate, by simulating the operation
of a fleet of aircraft over the life cycle, first with the
baseline configuration installed, than with the alternate.
Total failures at various levels of repair are computed and
their repair costs calculated. GCenerally, the improved fleet
with the alternate configuration installed costs less to
operate and maintain over the life cycle, and this cost
saving is then compared with the invectnent cost requirxed

to develop and procure the improved parts. All costs shown

9. Blewitt, S. J., PRODUCT IMPROVEMENT PROGRAM EVALUATION
US AAMRDL~TPR~77-17, U.S. Army Air Mobility Research and
Development Laboratory, Ft. Eustis, Virginia, Juns 1577,
ADAU42134.
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Lelow are in constant 1976 dollars.

4.3.2 Baseline Definjition

The baseline configuration is defined as the OH--58 fleet
equipped with the current metal rotor blades. Table 29 shows
the model input parameters for the baseline. Some of these
irputs such as number of components and study dvration are
common to the alternate as well. The 15-year study duration
includes a 5-year period of engineering, manufacture and
substantiation and will be further explained in Section 4.3.3.
The number of aircraft, utilization, MTBF at 2viation Unit
Maintenance (AVUM), and MTBR to depot were stipulated
parameters. The depot repair cost was calculated as 70% of
$1080 (the historical average repair cost), pius 30% of

$3740 (the estimated replacement cost for a scrapped blade).

This accounts for the fact that 70% of the blades are repairable

at depot and 30% are scrapped, resulting in an average cost
of $1878. The remaining inputs were supplied by the Govern-
ment or estimated by Boeing Vertcl.

TABLE 29. BASELIMNE INPUT PARAMETERS

Study Duration 15 years ]
Number of Aircrait 2432
Utilization (Flight Hours/Aircraft/Month) 13
Mean Time Between Failures (MIBF)} - AVUM 380 houcs
Mean Time Between Removal (MTBR) to Depot 475 hours
Percent Repaired at Depot 70%
Percent Scrapped at Depot 30%
AVUM Maintenance Manhours (MMH) to Repair .5 hour
Depot Repair Cost $1878
Component Weight 95 1b
AVUM Labor Rate $ 15 per hour
Blade Replacement Cost $374¢

4.3.3 BAlternate 1, Definition

Table 30 shows those input parameters for the composite
blade that differ from the bascline configuration, plus
other inputs required to define the configuration and its
operating scenario. All inputs were estimated based on R&M
analysis, and experience with the YUH~61A and H-46 glass
blades (reference section 4.2).
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TABLE 30. ALTERNATE 1. INPUT PARAMETERS

{ —

MTBF - AVUM 1100 hours
MTBR to AVIM (Intermediate Maintenance) 4400 hours
MTER to Depot 5200 hours
Percent Repaired 90%
Percent Scrapped 10%
Intermediate Repair Cost $ 130
Depot Repair Cost $1240
Component Weight 31 1b
Incorporation Rate (Blades per Honth} 140
Investment Nonrecurring $ 5.0 M
Investment Recurring (4864 Blades) 316.5 M
Blade Replacement Cost $3400

Figure 49 shows the schedule and major milestones that

comprize the l5~year study duration, starting on January 1, 1978
and ending Derember 31, 1992. The anslysis was based on

the stipulated 10 years of operation with the composite

blade through the end of 1982. The schedule is consistent

with this requirement, with the 10-year periocd beginning

at the mid-point of the klade incorporation.

YEARS

1234567821011 12 13 14 15

Fleet Operation -

Baseline Confiy. G
Investmant Non-

recurring GV
Investmert Recurring V¥

Fieaet Operation -~

Mixed Fleet Ly V7

Fleet Operation -
Alternate Config. AV, -

Army Requircment
{(10-yr. Lils Cycle) AV

d

Figqure 49. Alternate 1 Schodule.
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4.3.4 Results

The first run compared 15 years of operation of the fleet
with metal blades, versus installation and operation of the
fleet with composite blades according to the schedule shown
in Figure 49. The results are shown in Table 31l.

TABLE 31. BASELINE VERSUS ALTERNATE 1 - 15 YEARS

Baseline Alternate 1.
Operations and Maintenance (O&M)
Cost $45.8 M $17.6 M
O&M Savincs 28.2 M
Investmment Cost
Nonrecurring 5.0 M
Recurring 16.5 M
Total Investment Cost 21.5 M
Total Cost (OgM + Investment) $45.8 M 39.1 M
Net Savings $ 6.7 M

Examination of the schedule in Figure 49 shows that the
fleet with composite blades fully installed only operates
for eight years before the study period ends. Analysis of
computer output from the PIPE Model showed that for each
additional year of coperation after full installation of the

composite blades, cost savings increased by about $2.8 million.
This is the annual cost difference hetween operating the fleet

with metal blades, and operating with composite blades.
Based on this, the study duration was extended to 20 years

" and 25 years, with et cost savings of $20.9 million and
$35.1 million, respectively. These are referred to as alter-

nates 1A and 1B. The effect of chanying the life cycle is

graphically illustrated in Figure 50. The cumulative cash

flow for the baseline and alternate configurations is shown
in Figure 51. As can be seen, the break-even point occurs

in the twelfth year after initial investment is begun.

Sometimes in the course of a product improvement trade study,

it is more cost-effective to incorporate the improved part

as the older parts are scrapped, rather than un a more rapid

basis. In the run discusse” .pove, glass blades were in-
gtalled at the rate of 100 per month. In the following
cases, composite blades were installed as the metal blades
vere scrapped. This method of incorporation results in
composite blades being incorporated at an ever decreasing
rate, since each year there are fewer metal blades which

fail and are scrapped. For example, using the l5-year study
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duration, in the first year of incorporation. 480 metal blades
are scrapped and replaced by composite blades, and in the last
year of operation 180 metal blades are scrapped and replaced
by composite blades. Two cases were run to examine the
effect of changing the incorporation policy. The first
(labeled alternate 2), considers attrition replacement in a
15-year study duration; the second, alternate 2A, uses a
20-year study duration. 1In both cases, incorporatior of
composite blades begins in year 4, as previously shown in
Figure 49. The results are shown in Table 32. Under the
baseline column, values represent a 15- and 20-year study
duration. The difference in investment recurring between
alternate 2 and alternate 2A is found in the fact that in the
15-year study period, only 3456 composite blades are needed
to replace scrapped metal blades, while in the 20-year study
period, 4044 are needed. 1In neither case do all 4864 blades
get replaced. Comparison of alternates 1 and 2 reveals a
nearly identical cost saving. However, as the study duration
is extended the cost savings diverge. This is due to the
fact that once the entire fleet of metal blades is replaced,
annual costs are constant. Since the entire fleet is not
replaced in the alternate 2 cases, costs are still decreasing
but are not as low as alternate l1l; Figures 52 and 53 illus-
trate this point.

TABLE 32. BASELINE VERSUS ALTERNATES 2 AND 2A

Baseline Alternate 2 Alternate 2A i
O&M Cost $45.8M/$61.0M $22.6M $25.4M :
OsM Savings 23.2M 35.6M i
Investment Cost :
Nonrecurring 5.0M 5.0M i
Recurring 11.7M 13.7M ,
Total Investment i
Cost 16.7M 18.7M ‘
Total Cost (O&M & i
Investment} $45.8M/$61.0M 39.3M 44.1M ;
Net Savings $ 6.5M $16.9M

An additional advantage of rapid, scheduled incorporatioci., in
alternates 1, 1A and 1B, is not quantified here. This is the
benefit of not operating for as long a period with a mixed
fleet of metal and composite blades. Having a mixed fleet
requires maintaining two items in the logistics system. It
also carries the risk of not having the right blade configura-
tion when and where it is needed.

Figure 50 showed how the cost savings could increase due to
increases in the study duration or life cycle. Similarly, cost
savings are shown to increase as utilization increases. 7Two
utilizations other than tha 13 hours per aircraft per month
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were chosen for analysis.

Using the same input parameters as

alternate 1, utilization was changed to 20 hours and then 50

hours per aircraft per month.
alternates 3 and 3A.

These are referred to as

At 20 hours, cost savings increased
from $6.7 million (alternate 1) to $21.9 million.

At 50 hours

utilization, cost savings were projected to be $87.0 million.

This is illustrated in Figure 54.

Finally, since the most expensive maintenance event is always
the scrapping of a part (requires purchase of new part), the
sensitivity of scrappage rate at depot was investigated

(alternate 4).

In the baseline case, it was stated that 30%

of all metal blades removed and sent to depot were scrapped.

In alternate 1 it was estimated that only 10% of those composite
blades sent to depot would be scrapped.

Alternate 4 took the

"worst-case" approach that there would be no improvement in
the scrap rate, and that 30% of the composite blades sent to

depot would be scrapped.

Using the 20-year study duration,

cost savings were only reduced from $20.9 million (alternate
1A) to $19.2 million.

4.3.5 Summary

Table 33 lists all of the alternates discussed above, ranked in
order of cost savings from lowest to highest.

It is noted that

this study has been conducted at the target blade recurring

TABLE 33. COST SAVINGS OF ALL ALTERNATIVES

. Cost Savings | Cost Savings
Alternative ($3400/Blade) | ($6000/Blade)
2. 15 years, incorporation )
by attrition $ 6.5M $-2.8M
1. 15 years, scheduled
incorporation (100/mo.) $ 6.7TM $-6.4M
2.A. same as 2, but 20 years $16.9M $ 6.1M
4. 20 years, scheduled
incorporation, 30% scrap
rate $19.2M $ 1.5M
1.A. same as 1, but 20 years $20.9M $ 7.6M
3. same as 1, but 20 hours
utilization $21.9M $ 8.6M
1.B. same as 1, but 25 years $35.1M $21.6M
3.A. same as 1, but 50 hours
utilization $87.0M $72.8M
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cost of $3400/blade. 1If, as believed, this target is unreal-
istic, all listed savings would be reduced. Additional values
have been provided in Table 33, based on a recurring cost of
$6000/blade to show sensitivity to this variable.

One factor that was not considered in the analysis was the
quantity of OH-58 spare metal blades now in the supply system.
In the PIPE models, each time a metal blade was scrapped, the
cost of a new metal blade was charged to O&M costs, except in
the cases where it was replaced by a glass blade. The effect
of accounting for the metal blades in the supply system would
be to reduce O&M costs for both the baseline and the alter-
nates, but more heavily for the baseline, since more metal
blades are scrapped in the baseline case.

Based on the sensitivity analyses performed, it is recommended
that the composite blade be evaluated in the light of a longer
life cycle, that is, through 1997 (alternate 1.A.) rather

than 1992 (alternate 1), alternate 1.B. with utilization
through 2002 may be unrealistically long. The choice of a
longer life cycle can be supported by the low utilization
predicted and the high blade fatigue lift. In alternate 1l.A.,
the average blade still would have less than 2700 hours on it.

These recommendations are based on blade costs only. The life
cycle costs of the other helicopter systems would have to be
evaluated in conjunction with this information.

4.4 SURVIVABILITY

This section includes a discussion and analysis of radar
reflectivity, ballistic tolerance, the environmental subsys-
tems, and obstacle gtrike. Within the environmental subsystems
are lightning, erosion and ice protection.

4.4.1 Radar Reflectivity

Radar reflectivity information is presented in Appendix B,
which is classified and under separate cover.

4.4.2 Ballistic Tolerance

The selected design was evaluated for survival against the
three required threats based on the following criteria:

i. The blade must remain attached to the aircraft and
not separate at the hit point.

2. It must retain adequate fatigue strength to continue
operation for the contractually specified time.

3. It must not go unstable.
4. It must not go excessively out of track.
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Generally the first consideration has been found to be thke
dominant cne. Numercus bisde and coupon fatigue tests have
demonstrated that, in gensral, damaged fiberglass compoesite
structures which have sufficient residual strength to sustain
the required 1lc¢ads will have a long fatique life. A Vzrtol
test of a fibsrglass blade spar which had lost more than half
itz original AE showed no visible signs of damage propagation
after the eguivalent fatigue of 6 hours of flight and 8
minutes of mansuvering loads. Calculations indicated that
gsimilar results would be obtained if losses wWere up to 70%

or 80% cf the original strength.

Numerous arnalyses of a variety of blade/hub arrangemants
indicate that a blade that has suffizient residual strength
to prevent separation will alsc retain encugh stiffness te
prevent instability. This has been confirmed by wind tunnel
tests in which a blade was pregrassively weakened at several
choxrd and spanwise locations until it barely had the strength
to stay on. It demonstrated no signs ¢f instability.

During these same analyses and wind tunnel teats, out of track
was measuxed and determined to be well within acceptable
limits. 9n flight aircrafit, blades have been purposely set

as much as 6 inches out of track without prohibitive vibration.

Based on the above, it was concluded that the main consider-
ation would be “"whether the blade would remain attached to
the aircraft and nct separate at the hit peint®.

L N T M

4.4.2.1 Residual Strength

The ability of the blade to stay on after ballistic damage

is related to the residual strength of the cowmposite material
and ites layup in the spar. In general, the layup most import-
ant to blade retention is spanwise unidirectional. Damage tests
{(Referances 10 and 11) of both fiberglass and high modulus mate-
rials indicate that the loss of strength in a unidirectional lay-
up is closely proportional to the araa lost. In the case of
high modulus materials laid up as croesply, loss of strength
with damage increases considerably faster than the loss of area.
Therefore, the residual sirencgths of only the glass and high
modulus unidirectional material were counted on for blade
retention in the vulnerability evaiuation.

W e

1Q@. DESIGN DATA FOR COMPOSITE STRUCTURE SAFE LIFE PREDICTION,
Boeing Vertol Company, AFMIL-TR-73-223.

1l. EVALUATION OF BALLISTIC DAMAGE RESISTANCE AND FAILUxE
MECHANISMS OF COMPOSITE MATERIALS, AVCO Corporation,
AFML-TR-72-79.
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In order to make the ballistic survival evaluaticn, scale
drawings were made on transparencies of 7.62 mm, 12.7 mm, and
23 mm, API rounds. These were superimposed on the drawings
of the root and outboard section to simulate a wide variety
of hit positions and angles.

It became apparent that the blade was invulnerable to 7.62 mm
projectiles in either the straight or tumbled attitudes. It
was also evident that 12.7 mm in the untumbled attitude is not
a survivability threat. The 12.7 mm in the tumbled posiction
required a minimal degree of judgement, Its length dimension
is such that if it is side-hit on the nose of the blade it
could go completely through the spar. However, tests have
shewn that such a hit would not have the energy to go through
and would tend to divert to a different direction before
doing catastrophic damage. Therefore, the blade was judged
to be invulnerable to any hits by 7.62 mm or 12.7 mm.

In order to determine the wvulnerability to Z3 mm API, the
damaged blade was stress analyzed on a "worst hit" basis.

After examining the span of the airfoil section, Station 53
(.25R} was selected as the point at which a hit would leave

the regidual material most highly stressed. The sections
further inboard have large positive structural margins in order
to provide the required stiffness. The calculations of Figure
56 show that, at Station 53, a section sc damaged would have
sufficient residual strength to permit blade retention for
urlimited life at cruise speed and to sustain an instantaneous
maneuver load up to 2.5 g's. Inboard of Station 53;a 23 mm
API hit is suxrvivable at any point and dirsction of entry.

This conclusiocn is based on experience with hits on similar
materials and masses. While a 23 mm API round would penetrate
deeply, and in most cases go through, the blade would not be
loat. Thus, the conclusion is that, from a strength stand-
point, the blade is invulnerable to all of the reguired threats.
Hits on specific locations such as the various balance and in-
eri:la weights could cause severe vibrations but are not be~
lieved to be catastrophic.

A dynamic¢ analysis was conducted to determine blade stability
after sustaining the seme damage to Station 53 noted above.

4.4.2.2 Dynamic Response

The three aress of concern for the effects of ballistic damage
on rotor dysamics are:

1. Possible reduction in the aervelastic stability margins
2. The potential for vibration caused by blade cut-of-track

3. Excesgive in~plane vibration resulting from the tip
weight loss
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ALL MATERIAL REMOVED (23 MM)

/\mm CF PROJECTILE

- N

fA (DAMAGED)

'}7 o2 . 04—+

pammenanaed P¥-1 ey

CONSIDER HIT AT BLADE STA 53 (.25R). JUST BEFORE SPAR
MATERIAL BUZLDUP FOR INCREASED STIFFNESS AT ROOT, BUT
WITH PARTIAL TRAILING EZDGE BUILDUP,

SECTION PROPERTIES

EIF EICK AE
UNDAMAGED 4.32 336 18.86
DAMAGED 0.744 160 10,59

LOADS

THE FLAPWISE BENDING LOADS ARE DEWSRMINED BY

THE LOADED SPANWISE SHAPE OF THE BLADE, WHERE

THE LOCAL CURVATURE IS THE BENDING RADIUS.

THEREFORE THE BMp OF THE DAMAGED BLADE IS 17.2% ;
OF THE UNDAMAGED BLADE. §

)
[%-}giso.uﬂ R~ EL

. F

P e

THE CHORDWISE AND AXIAL LOADS ARE NOT SO
AFFECTED, THE CHORDWISE MOMENT IS AFFECTED
BY THE LOCAL SHIFT OF THE NEUTRAL AXIS,
(STEADY ONLY} STA 53

CONDITION | My IN.-IB| M, IN.-tB  |Cp LB :
URDAMAGED f
STATIC NO. 1{=~-7000 133,000 47700 | REF SECT. j
NO. 3]15000 97,000 26100 5.7 :
FATIGUE 960 ¥ 2580} 67,000 ¥ 17900 | 35380 3
DAMAGED N -
smmic No. 11-1208 | 123,200 i 1
PATIGUE 165 ¥ 444 {156,200 = 17900 35380

. Figure 56, 23 mm API Damage Tolerance
” ’ Structural Analysis
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DETERMINE STRESSES AT PT A (SEE

SKETCH) (KEVLAR 0°)

X = =6.1 M (=2) My (=X)
= _plT C CF
Z =-0.6 +eg = ET,, + ---——--EICH + 3E
STRAINS y IN./IN.
CONDITION Mg Mo Cp TOThL
STATIC NO. 1 -971 9353 4504 |13,186
NO. 3 2080 6206 2465 |10,751
FATIGUE 133 ¥ 358 5955 ¥ 682 3340 19428 % 1040
KEVLAR 0°
STATIC

STATIC STRAIN ALLOWABLE = 14,500 py IN./IN. (SECT 5.7)
STATIC CASE (2.5 G) MAX STRAIN = 13,186 u IN./IN,

(REQUIREMENT IS 1G)

FATIGUE

USE 75% OF NORMAL FATIGUE DESIGN LOADS
CONSERVATIVELY, MEAN-3c ALLOWABLES AT 1

MS = %%%%% -1 = +0.10

3§DCYCLES

eg = 0,75 (9428 £ 1040) = 7070 £ 780 u IN./IN.

ALT ALLOWABLE AT 108 CYCLES WITH A STEADY

OF 7070 is 1650 u INW./IN,

M.S., = }'g'gg' -] = +1012

(REQUIREMENT IS 30 MINUTES OR

30 (354) = 10,620 CYCLES)

(SECT 5.7)

Figure 56, 23 mm API Damage Tolerance Structural
Analysis (Continued)
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As discussed in detail in the Dynamic Analysis Section on
aeromechanical. stability, the stability of tie rctor is a
function essentially of the flap and chord naturul frequencies,
except when considering classical flutter and stall flutter.
The change in flap and chord frequencies of the composite
rotor blade due to a 23 API hit at Station 53 inches (the

most critical station structurally) is less than one-half of
one percent, so that the roveor stability is not adversely
affected. The only remaining stability issues are blade
classical flutter and stall flutter. Based on a comparison

of T-60 aeroelastic analysis computer programs for the damaged
and undamaged blades, the damaged blade is free of classical
fiutter and the onset of stall flutter is not noticeably
affected by the change in torsional dynamic characteristics
due to ballistic damage. This is reflected in the comparison
of the rates of convergence and changes in angle of attack
with successive iterations, as shown in Figure 57.

The issue of vibration induced by blade out-of-track is
addressed in Figures 58 and 59. The data is predicted by the
C-60 rotor aeroelasticity computer program for comparable cases
with undamaged and damayed blades. In Figure 58 the blade root
dynamic moments and shears for the damaged and undamaged

blades are compared. The loads are nondimensionalized by
assuming the undamaged blade moments and shears equal unity.

It can be seen that the vibratory moments and in-plane shears
all show less than a S5-percent change due to the effects of

a damaged blade. The vertical shear increased hy 12 puicent,

so this was investigated further, especially in iight of

the fact that this is a major source of airframe v.hration in
two-bladed teetering rotors. Figure 52 shows the ¥ixed system
hub vertical forces for both the undamaged and damaged composite
rotor blades. It is significant that the two-per-rev shaking
force actually decreases by 4 percent while the steady increases
by 2 percent and 4 per rev by 7 percent. Sinee the magnitude
of the 2 per rev is generally ten times the 4 per rev ampli-
tudes, it can be concluded that the hub vibrations will see
little or no increase due to ballistic damage.

Referring bacl. to Figure 58, it should be noted that there is
minimal change to tip deflection flapwise; another indication
that there will be no out-of-track problems. Finally, the
vibratory pitch angle of the damaged blade is 12 percent
higher than the undamaged composite blade. This a:..ount does
not result in any significant increase in blade stall, as
observed by comparing the pitch link load waveforms. Thus,
the damage to one blade as specified earlier will not result
in adverse stability or vibration levels that will make air-
craft control impossible.

The tip weights and their canister are located at Station
201.34 and nominally weigh 1.3 pounds. The canister presents
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OH~58 MAIN ROTOR BLADE
FIXED SYSTEM HUB VERTICAL FORCES
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a small target, especially at low blade angles. However, the
' loss of the tip weights due to a ballistic impact would cause

an unbalance force of approximately 900 pounds which offers

a strong possibility of causing sufficient impairment of pilot

control toc prevent a safe landing.

4.4.3 Environmental Subsystems

The environmental subsystems include lightning, erosion and
ice protection. The Boeing Vertol OH-58C/A composite replace-
ment blade includes each of these subsystems.

4.4.3.1 Lightning Protection

The outboard 18 inches of blade will be covered by a wire
mesh. This will create a lightning screen in the blade area
most susceptible to lightning strike because of static
electricity buildup and the presence of metal components at
the tip. The screen is attached to a .l6-inch-diameter
{20,000 circular mills) copper wire to permit grounding of a
200,000 amp lightning strike without catastrophic failure.

Other metallic parts such as the inertia weights, mid-span
tuning waights and sweep balance weights shall also be
connected to the copper grounding wire. However, in the
case of the inertia and tuning weights, a noncatastrophic
amount of burning through nonmetallic material would occur,
if the charge penetrates to the subsurface weights.

Some degree of damage would also be expected in the event of
a blade passing through an ionized air mass, one through
which lightning had just passed. The charge may attract to
the copper wire within the nose resulting in damage to the
material forward of the wire. Such damage would be non-
catastrophic; although the blade would probatly be unrepair-
able.

o R B8 I W

4.4.3.2 Erca3ion Protection

The erosion protection system is designed to protect the
blade leading edge from excessive wear under adverse environ-
ments such as sand, dust and rain. The system consists of

a .075-inch-thick Estane boot honded in a recess of the lead-
ing edge. The boot would extend spanwise from 13% radius to
within 9 inches of the tip (96% radius). The outboard 9

; inches of blade would utilize an electroformed nickel leading
edge. The tip cover is also of nickel.

v

The Estane boot in the flat is 5.5 inches wida with a chord-
wise coverage, from the leading adge, of 1.53 and 3.33
inches on the upper and lower surfaces of the airfoil res-

) pectively. The boot is field replaceable, and replacement

- will not affect the R&M properties of the kasic blade.
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The Estane boot does not extend to the blade tip since the
airfoil at the tip is very small and thin -and the .075 inch
thick Estane would be a large percentage of the tip leading
edge cross section. Any erosion would have a large adverse
aerodynamic effect on such a thin airfoil.

Erosion is disproportionately severe at the tip and although
Estane is the best of the nonmetallic materials from an
erosion standpoint, its resistance to rain erosion is inferior
when compared with metals. Using a nickel leading edge for
the outmost 9 inches will increase the boot life. It is
anticipated that the Estane leading edge will meet the 1200
flight hour requirement; provided the aircraft is used in
reasonable rain conditions, up to 1/2 inch/hour. Use of

the aircraft irn heavy rainfall conditions would be likely

to cause more frequent replacement of the Estane boot.

4.4.3.3 1Ice Protection

The requirement to minimize the radar cross section eliminates
the standard helicopter electrical deicing system because

of the metal heating elements. The only other method of

ice protection used on production helicopters (by the user)
is the chemical (alcohol) system. This system is heavy

when the weight of the alcohol is included. It has not

been possible to efficiently use the alcohol because of non-
uniform dispersion and it is basically an anti-icing system
80 chat the alcohol is used continuously. Therefore, the
pneumatic boot deicing system is proposed since it has been used
successfully for many years on fixed-wing aircraft. It has
the following advantages:

Nonmetallic blade boot
Low weight

Low pneumatic power
Simple/low cost

Noncritical cycle {no runback if cycle is off
optimum)

®
°
® Low electrical power required
°
°
°

It has the disadvantage that it has not been developed for
helicopter rotors, and, therefore, potential problems have
not been resolved. Consequently, a development program would
be required.

Each blade has a ,07S5-iach-thick Estane boot which would be
divided into .50-inch-wide spanwise flat tubes. (While chord-
wise tubes have less drag when inflated, a spanwise feeder tube
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is required which compromises the design, and fixed-wing exper-
ience has shown the chordwise tube to be less effective in
shedding ice.) A single supply tube would connect each boot at
its root with the hub, then pass through the rotor shaft to the
stationary supply system by way of a rotary gland. Pressure
is supplied during the deicing cycle and a vacuum is provided
during thedwell cycle. The pressure and air volume per cycle
are 22 psi and .2 cubic foot respectively.

When the boot is not being inflated for deicing, a vacuum is

maintained in the tubes to keep the boot tubes' outer wall

against the biade to preserve the airfoil contour. This

vacuum pressnure i-ust offset the low surface pressure which

provides most of the blade lift on the upper surface and which

tends to raise the tubes' outer wall. The vacuum at the hub

must be a lower pressure than required at the blade tip to :
allow for the pressure increase as a result of the centrifugal ‘
forces on the column of air in the blade boot. In forward

flight, minimum pressure is required when the blade has

an azimuthal position of 350° to 10° (Ref.0°® forward). At this

azimuth, the vacuum needs to be approximately 5 psi absolute.

In fixed-wing turbine-powered aircraft, bleed air controiled
by a regulator is used to provide the inflation pressure, and
the vacuum is provided by bleed air powering an ejector. For
a helicopter the same system could be used, except that the
ejector would be replaced by a positive displacement vacuum
pump to obtain the lower pressures with reduced power consump-
tion. When bleed air is used, the positive pressure is limited
to the’ pressure available at flight idle, which would occur
during descent. This is approximately 22 psi gage with the
OH-58 engine. The cycle can be controlled manually or auto-
matically with an icing rate instrument.

The boot would extend spanwise from 12% radius to within 9.0
inches of the tip (968%R). A metal leading edge without an
active deicing system is utilized for the outmost 9.0 inches.
Based on data from limited hovering tests of helicopters in
icing conditions, the blade from 96% to 1008 radius would not
collect ice at ambient temperatures above 9.2°F. At lover
temperatures, if the ice at the tip reached an average thick-
ness of .25 inch on the total impinged area, the weight of
the ice would be .18 pound, which with unequal shedding would
produce an unbalance force of 133 pounds until the opposite
blade shed. 133 pounds of unbalance would result in an un-
pleasant, but not unacceptable pilot environment of approxi-
mately $0.04 g's.
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4.4.4 Blade Obstacle Strike

The requirement for the OH-58 C/A blade is to permit strikes
of l-inch-diameter pine branches or .25-inch-diameter non-
shielded copper wire without catastrophic blade damage.

Vertol's historical data shows that 55% of blade strikes
occur at the outboard 10% of the blade. This is the portion
that tapers on our design. Boeing Vertol has conducted an
extensive whirling arm impact test program to determine the
ability of a variety of blade types and sizes to survive
hits on tree branches. Figure 60 shows a schematic of the
test equipment used and Table 34 itemizes the blades tested.
The blades were whirled at their actual flight tip speeds.
Then maple dowels of various diameters, supported at each
end were injected into the blade tips. One of these blades,
the BO-105 tail rotor, most closely simulates the size and
construction of the OH-58 C/A fiberglass blade near its tip.
This blade was driven through a l~-inch-diameter maple

dowel without sustaining any visible damage. A l-inch-
diameter maple dowel is considered to be roughly equivalent
to a 2-inch-diameter pine branch. Based on these tests,

the blade easily meets the requirement. It should be con-
sidered, however, that tree branches are not supported

- rigidly at both ends and may be struck at a variety of angles.
Still, the probability of this blade's surviving any hit of
a l-inch-diameter pine branch must be considered very high.
Aesessing the blade's ability to survive a strike on a .25~

.

diameter-copper wire is less subject to quantitative evaluation.

Most wires. are strung rather loosely in a nearly horizcmtal
plane, which is also the plane of the rotor. This means that

a sliding swipe of the wire is more likely than a perpendicular

chop. The effect of this may be to not cut the wire buf to
divert it over the rotor, into the rotor mast or into othar
parts of the aircraft. However, assuming that the wire is
somewhat off the rotor plane, a high probability exists that
the wire will be cut and the blade will not be seriously
damaged.

Vertol did a study of 136 wire strikes of Army helicopters
that occurred between July 1967 and November 1973. Of these
136 strikes, 18 were on the main rotor. Seven of these 18
were crashes, and eleven were other types of mishaps. Of the
seven crashes, all were with high tension lines. None of
the crashes were due to hits on communications lines. Ope
of the incidents was of an OH-23D whose rotor hit a 1/4-inch-
diameter copper wire. This resulted in a precautionary
landing with no noted damage. The whirling arm tests of
wooden dowel hits consistently showed less damage to fiber-
glass blades than to equivalent metal blades. Thus, it
appaars logical to assume that the OH-58 C/A would also
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A VIEW A-A
Figure 60. Schematic of Impact Test Fixture
Table 34. Whirling Arm Impact Test Summary
Toil Rosor Sledes Main Slades
Exieting Tail Slades 18-in. Chord (Outboard Section)
H-13 Aluminum CHAGA Susl Spar
H-19 Aluminum UTTAS Fibergiess/Swel Noss
H-34 Aluminum UTTAS Fibergleas/Giless Noss
UH-1A Aluminum UTTAS Fiderg s/ Titanlum Nose
UH-10 Aluminum Mined Modulue/Steel Nos
90-108 (4 Typesl
Versl Tell §lades 3.387-in. Chord (Entire Slede)
UTTAS Fibergioss C-Sper, Metal Noss UTTAS Fiberglen/Stee! Now
UTTAS Fiberglass C-Sper Gloss Now UTTAS Fibergless/Glam Noss
UTTAS Fisergiess Compervnend UTTAS Flperglea/Swel Nowe, Scaled Weight
UTTAS on Flex-Swrap Hud Mixod Modulue/Swel Nos
Comperien Slades
Gyrodyne Fibergless Siede Section
OC-3 Progeiter (Forged Aluminue)
Toll Rosor Main Rowr
Sl Typee 18 13
Slsde Spevinens ‘8 13
Tom L1 41
Towl Tem 2
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survive a wire hit better than an equivalent metal blade and
that a direct hit on a .25-inch-diameter copper wire would not
result in a catastrophic blade failure.

4.5 DYNAMIC ANALYESIS

4.5.1 Fhysical Froperties

The spanwise distributions of running weight, flapwise, chord-
wise, and torsional stiffness; chordwise center of gravity and
neutral axis lccations; pitch inertia and shear center location
are presented in Figures 61 through 68. These physical proper-
ties are shown for the proposed composite blade design and are
compared to the existing OH-58 metal rotor blade. As seen in
the figures, the cbjective of matching the current weight per
inch, flap and chord stiffnesses, and center-of-gravity location
was achieved satisfactorily. The flap stiffness shows some
reducti wm, but it will be shown that this did not impact the
flap natural frequencies. The effect of the aft shift in
neutral axis on loads and the effects of the reduced torsional
stiffness on frequencies and stability will be discussed in
subsequent sections.

4.5.2 Natural Frequencies and Mode Shapes' :

The fully coupled natural frequencies of the composite OH-58
main rotor blade predicted by the Y-71 frequency analysis
computer program are shown in Figures 69 and 70. There are

two basic types of modal deflections given in the frequency
diagrams. The collective mode for a two-bladed teetering rotor
may be characterized as a hingeless rotor flapwise and an art-
iculated rotor in the chord direction. The resulting frequen-
cies are shown in Figure 69. The cyclic mode, whose frequencies
are seen in Figure 70, is characteristic of an articulated
rotor in both flap and chord, with a negative chordwise trans- T
lational spring emperically defined on the OH-58 as represent- !
ative of the shaft flexibility and an infinite chordwise

rotational spring. The frequencies of the current metal NH-58 ;
rotor blade at 354 RPM are also indicated in the figures. 1In ’
all cases the flapwise natural frequencies of the composite

blade and the existing metal blade agree to within 3 percent.

The chordwise frequencies of the composite blade are predicted

to be 6 to 8 percent higher’'than those of the metal blade. How-

ever, experience at Boeing Vertol has shown that coupling with

the drive system will reduce the predicted frequencies slightly

and place them very close to the current design.

o - W e
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The torsional frequencies are considerably lower due to a large
reduction in torsional stiffness. The fundamentally coupled
torsional frequency has been changed from 6.4 per rev at 354
RPM to 3.8 per rev for the composite design. This is placed
away from any potential adverse coupling in the normal operating
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range and is close to the first torsional frequency of other
Boeing Vertol aircraft: 3.7 per rev for the YUH-61lA and 3.5
per rev for the BO-105, a fact which is directly applicable
since both 2-bladed and 4-bladed rotors are subject to 4/rev
vibratory hub loads as a major contributor to fuselage vibra-
tion. It will be seen that this drop in torsional frequency
has no detrimental effect on control loads or stability.

The fully coupled mode shapes for the first three-flap, two-
chord and first-torsion natural frequencies are presented in
Figure 71 for the collective mode and in Figure 72 for the
cyclic mode. These mode shapes are nondimensionalized to a
l-inch tip deflection in the flap direction.

4.5.3 Rotor Loads and Control Loads

The spanwise distributions of high-speed level flight loads for
flap, chord and torsional moments as predicted by computer
program L-02 are presented in Figures 73 through 75. It can be
seen that the composite blade provides beneficial reductions in
fiap bending moments due to reduced flap stiffness and negligi-
ble change in dynamic chord loads. The steady chord moments
show a marked increase in loads at 25 percent radius for the
composite blade. This is due to a significant aft movemeant of
the neutral axis location. However, it is shown in the struct-
ural analysis section that this did not impair fatigue life or
structural integrity. The increase in steady chord moments
does not affect blade dynamic response.

The predicted level flight control loads as indicated by
pitch link loads do not differ significantly from the measured
flight loads of the baseline OH-58 main rotor.

4.5.4 Hub Loads and Vibration

The vertical and in-plane fixed system hub loads for the com-
posite blade design and the baseline metal blade are shown in
Figure 76. These high-speed level flight hub forces are a
measure of the effect on airframe vibration of the composite
rotor blade. The major contributors to airframe vibrations
will be the two and four per rev components of hub forces in
the fixed system. It is evident from the figure that there
are small increases in the in~-plane vibratory loads. However,
the principal contributor to hub vibration is the 2/rev verti-
cal force, which is unchanged. Consequently, it is concluded
that the net result of the change in fixed system hub forces
due to the change in blade physical properties is that there
will be little or no change in the fuselage vibration charac-
teristics.
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4.5.5 Aeromechanical Stability

The stability of the proposed composite rotor blade configura-
tion consists of two aspects. These are the air resonance
stability analysis and classical flutter analysis. The
assurance of aeroelastic stability is based on the comparison
of the dynamic characteristics of the composite blade to the
dynamic characteristics of the existing OH-58 metal blade,
which is known to be stable. A classical flutter analysis

was performed using the L-01 computer program.

As described previously, the proposed composite blade has
egsentially the same flap and chord bending dynamic charac-
teristics as the existing OH-58 metal rotor blades. Only the
torsional natural frequency is significantly different. How-
ever, it has been shown that this has little influence on
aeromechanical stability other than flutter. This fact was
demonstrated experimentally on a Froude scaled model of
YUH--61A in the Boeing Vertol wind tunnel, as documented in
Reference 1. The rotor blade fundamental torsional natural
frequency was lowered from 4.8 per rev to 4.0 per rev at
normal operating rotor speed with no perceivable change in
air resonance stability in either hover or forward flight.

Since the torsional dynamic characteristics are not important
in aeroelastic stability, and since the flap and chord dynam-
ic responses are essentially the same as the current CH-58
main rotor blades, the stability of the proposed composite
rotor configuration will be equivalent to the existing OH-58
rotor system. This is true because there will be no modifica-
tions to the OH-58 control system, drive system or airframe.
It can be concluded, therefora, that there will be no degrada--
tion in the stability margins of the OH-5¢ main rotor system
due to the composite rotor blade design.

A classical flutter analysis was performed using the L-01
computex program to inaure that the rotor was free from
flutter up to and including 509 REF4 (1.15 x N L }. Through-
out the range of flight conditions investigatgd,’ the rotor
indicated no evidence cf the onset of flutter. The critical
damping ratio for the fully coupled banding modes was 3
percent or greater in all cases, indicating satisfactory
margins for stability.

4.6 AIRCRAFT PERFORMANCE

This subsection presents estimates of the hover and forward i
paxrformance of the OH-58 helicopter with the improved composite i
main rotor blades installed. In the absence of complste data i
on the aircraft, the performance was calculated by first esti- i
mating the performance of the existing OH-58 using the 1

!

=]
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Government-cupplied 0012 data and assur.ing the following
losses:

(1) Transmission Efficiency 97%
(2) Download in Hover 2% of GW
(3) Accessory Horsepowex Loss 11 HP

The tail rotor power losses were cbtained from the forward
flight trim and performance analysis orcojram ¥Y-92 gnd C—81..
Both programs predicted essentially the same fraction gf main
rotor power absorbed. The fraction varies between 8% in hover
to 1.5% at high speed. The next step was to collapse the pub-
lished performance data for the existing OH-58. It was foupd
that the data collapsed on an SHP/o vs GW/o basis, where ¢ is
the relative density. This shows the absence of substantial
Mach number effects on the performance.

To provide a consistent basis of comparison with the publish-
ed performance level presented in the OH-58 detail specifica~
tion, the analysis utilized to predict the performance of the
OH~58 with the prcposed system was used to predict the basic
OH-58 performance. At each value of GW/o and airspeed the
ratio of calculated SHP/oc to published SHP/0 was computed.
These ratios, or correction factors, were then applied to the
values of required power calculated for the OH-58 with the
improved blades installed.

4.6.1 Hover and Vertical Climb Performance

The hover performance for the OE-58 with improved composite
blades is presented in Figure 77 in the form of a plot of

weight coefficient, C.,, against power coefficient, Cp- Also
shown is the data €for the existing air.raft.

The variation of hover ceiling with gross weight for the OH-58
with the improved composite blades is compared to that of the
existing aircraf in Figure 78. The improved blades are es-
timated to increase the ceiling by approximately 1000 feet at
all gross weights.

The vertical rate of climb performance, for different grogs
weights and altitudes at S.L. standard temperature and 95°F
is presented in Figures 79 and 80, respectively. Rate of
climb is most improved at the high gross weights where the
power reductions were sought.

4.6.2 Forward Flight Performance

Estimated performance for the improved OH-58 is presented (in
nondimensiornal form) in Figure 81. The aircraft performance
in terms of shaft horsepower versus true airspeed is presented
in Figures 82, 84, 86, 88, and 90. The corresponding perfor-
mance plots for the existing OH-58 were taken from the BHC
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c. x 104

specificatior document and are reproduced here for comparison
as Figures 83, 85, 87, 89, and 91.

Maximum rate of climb performance at intermediate power set-
ting for standard day and 95°F is presented in Figures 92 and
93. Maximum endurance performance is shown in Figure 94.
Figure 95 presents the estimated autorotation characteristics
with the improved composite rotor on the aircraft and compares
it with thgse of the existigg OH-58. The mission profiles for

2000 ft/95°F and 4000 ft/SS5F are shown in Figures 96 and 97
respectively.

180 ¢~ . L. . '
170
160 - * * IMPROVED COMPOSITE
. ROTOR BLADES
150 ,
—EXISTING OH-58C
140
130
z
120
110
A APPLICABLE FOR ALL TIP MACH NUMBERS
168 e EXISTING OH-58 DATA BASED ON BHC
DETAIL SPEC NO. 206~947-203 .
e TAIL ROTOR FOWER = 8% OF M/R POWER
90 ~ @ HOVER DOWNLOAD = 2% GW
e 11 HP ACCESSORY POWER
80 . - . N . -

-

40 50 60 70 80 90 106 110 120 135 140 150
SHP (Cp X 10°)

Figure 77. Nondimensional Hover Power Reguired
out cf Ground Effect
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MISSION PROFILE
2000 FEET, 95°F

HOVER OGE
CRUISE AT MCP FOR 10 MINUTES FOR 30 MIN
V = 100 KT
LAND WITH LOITER
FOR 30
30 MIN MIN. AT
RESERVE AT o
MCP VvV = 40
KT
- 17 NM RADIUS —»% HOVER OGE
FOR 30 MIN
MISSION SEGMENT FUEL USED (LB)
8 Minutes at Ground Idle 14
Cruise out at MCP for 10 Min 33
Hover for 30 Min at OGE 100
Loiter for 30 Min at V = 40 KT 67
Hover for 30 Min at OGE 100
Cruise in at MCP for 10 Min 33
Land with 30 Min Reserve at MCP 98
TOTAL FUEL FOR MISSION 445

NOTES:
1. Takeoff gross weight = 3200 1b
2. Usable fuel = 457 1b

3. All m’ssion segments calculated at 3290 1lb

Figure 96. Mission Profile, 2000 Feet, 95°F
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MISSION PROFILE
4000 FEET, 95°F

HOVER OGE
CRUISE AT MCP FOR 10 MINUTES FOR 30 MIN
V = 100 KT
LAND WITH &OITER
FOR 30
30 MIN ; MIN. AT
RESERVE AT h
MCP vV = 40
KT
Y
- 17 NM RADIUS —»% HOVER OGE
FOR 30 MIN
MISSION SEGMENT FUEL USED LB
% Minutes at Ground Idle 14
Cruise out at MCP for 10 Min 30
Hover for 30 Min at OGE 102
Loiter for 30 Min at V = 40 KT . 66
Hover for 30 Min at OGE . 102
Cruise in at MCP for 10 Min 30
Land with 30 M'n Reserve at MCP 91
TOTAL FUEL FOR MISSION 435

XOTFS:

L. Takeoff gross weight = 3200 1b
2. Usable fuel = 457 1b
3.

All mission segments calculated at 3200 1b

Figure 97. Mission Profile, 4000 Feet, 95°F

185

s o

o S A B bbb




$
!
!
i
|
H
i

4.7 STRUCTURAL ANALYSIS

4.7.1 Summary

A preliminary design analysis has been performed on a composite
main rotor blade in sufficient detail to confirm the feasibi-

lity of the design concept.

Fatigue and 1limit design load

conditions have been generated from the prescribed £light
profile and the known critical conditions of MIL-S-8698. A
fatigue design factor of 1.25 on high-speed level flight loads
was determined from the mission profile and material fatigue
characteristics, to assure a minimum of 3600 hours life.

Based on the large margins of safety for fatigue, as shown in

Table 35, an unlimited life is anticipated.

Fail~safety is

achieved by virtue nf the "soft" failure modes of the material

used in the blade and redundant mass retention methods.

TABLE 35. SUMMARY OF IaARGINS OF SAFETY
’ MARGINS
LOCATION MODE OF
SAFETY
Blade Retention
station 18.5 Chord moment; ultimate
compression + il
Station 14.3 Chord moment; ultimate
compression + .08
Station 14.3 Chord shear; fatigue + .52
Station 18.°% Pin wrep, C.F. and flap bending;
ultimate tension + .58
fatigue + .96
Basic Blade
Station 53 Combined bending and C.F.:;
ultimate tension + .96
ultimate compression o
Station 60 Combined bending and C.F.:;
fatigue +1.10
;tation 170 Core; shear fatigue + .79
Aft Fairing
Station 180 Transverse flexure; fatigue +1.80

Upper Surface




4,7.2 Criteria

The structural design criteria for the composite main rotor
bilades are the following:

Design limit load factor of +2.5 g and -0.5 g shall be applied
at a helicopter gross weight of 3200 pounds. Ultimate strength
requirement shall be in accordance with the maneuver require-
ments of MIL-S-8698, "Structural Design Requirements, Heli-
copter". This shall include flight loading conditions, such as
maneuvers, turns, and autorotation, and miscellaneous loading
conditions, such as rotor starting and static droop.

A minimum fatigue life of 3600 operating flight hours based on
the fatigue loading spectrum shown in Table 36, F “ght Profile.
The flight profile is that specified in Reference °, modified
as noted on the table.

The material properties to be used are those shown i “Yable 37
and Figures 98, 99, and 100. These properties are . .od on
test data and are mean -30 values except where noted as
"estimated".

4.7.3 Loads

The basis for the loads used herein is the measured flight
data of References 13 and 14. These are modified by gross
weight factors a..d by the effects of the differences in
physical properties and the configuration between tlie baseline
and th2 composite blade found in Section 4.5, Dynamic Analysis.
Boeing Vertol computer program L-02 is used to calculate the
loads for both the baselin- and the composite blades.

4.7.3.1 Limit Design Loads

The limit design loads are developed in the same manner as
those in Reference 14, Part II. The chord moments are the
sum of those induced by airload and centrifugal force. The

12. PROPOSAL FOR A TRADE STUDY AND PRELIMINARY DESIGN OF AN
ADVANTED COMPOSITE ROTOR BLADE FOR THE OH-58C/A HELICOP-
TER, Boeing Vertol Company, D210-11287-1, in response to
RFQ DAAJ(02-77-Q-0143.

13. MODEL 206A-1 CERTIFICATION FLIGHT LOAD SURVZY (6 Volumesg),
Bell Helicopter Company, 206-194-062, August 1969.

14. LCAD DETERMINATION AND STRUCTURAL ANALYSIS OF THE 206-011-
001-3 M3IN ROTOR HUB AND BLADE ASSEMBLY FOR THE 206A-1
HELICOPTER Rev. C, Bell Helicopter Company, 206-099-107,
October 1977.
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composite blade design load uses the airlcad from Reference 14
and the centrirfugal force induced mcments from Bdeing Vertol
Computer Program L-02. The composite blade has & further aft
c.g. than does the baseline blade resulting in larger centri-
fugal force induced moments. The flap or beam momants have
been calculated using program L-02 are less than that of
Pzference 14. Therefore the latter are conservatively used
in the structural substantiation analysis. Limiz load plots
are shown in Figures 101 through 103 for the following load

conditions:

Condition Mco* (In.-Lb) RPM Nz (Vert.)
1 +79,500 411 -0.5
2 -53,000 411 -0.5
3 +79,500 304 +2.5
4 -53,000 304 +2.5
*Mco (max) = 53,7420 (1/2 + 1) = 79,500 in.~1lb
”co {(min) = 53,000 ( 0 - 1) = -53,000 in.-1lb

Additionaliy, a 4.0-g ultimate ground flapping and a rotor
start condition are also examined.

4.7.3.2 Fatigue Design loads

The fatigue loads used for the flight profile of Table 36 are
those measured flight test data of Reference 13, modified by
gross weight, airspeed, load factor and configuration differ-
ences between the basgseline and composite blades. Station 60

is used to examine the fatigue load spectrum for lif.. versus
endurance limit trends and is considered to be repre catative
of both the root end and a mid-span basic blade section. The
design fatigue factors for this station will be used as typical.

The analysis subsequently performed with thoese lcads is to
substantiate feasibility of design and to substantiate weights.
Torsional stresses are typically of low magnitude and have been
neglected in this preliminary design phase.

Fiap and chord bending moment loads vary with airspeed as is
shown in Figures 104 and 106. The more critical c.q. is used
1006% of the time. It is assumed that the blade lcads vary
inearly with grosgs weight. The mgasured loads of Reference 13
are for a 3000-1lb gross weight aircraft and the composite
blade aircraft gross weight is 3209 1lb (Figures 108 and 109).
Therefore, a factcr of 1.067 (3200/3000) is applied to the
measured loads. An assumption is made that blade bending loads
grow linearly with load factor (Nz). Thig is ccaservative
throughout the airspeed range required, as is seen in Figures
105 and 107.
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3 OH-58 MAIN ROTCR BLADE
- STATION 60
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REF. 13
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*HOVER
0 ' ’ i 4
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Figure 104. Alternating Flap Bsuding Momeat T, Airspecd

GW = 3000 LB ASSUMED LINEAR BENDING
ALT. = 3000 & 6009 FT MOMENT GROWTH TREND
FWD & APT CG WITH Ny AT 0.9 Vg

REF. 13 FOR ANALYSIS. SIMILAR

FOR QOTHZR AIRSPEEDS.
3 o /
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Figure 105. Alternating Flap Bending Moment Vs.
Maneuver Load Factor

197

- e

Y




OH-58 MAIN ROTOR BLADE
STATION 60
MEASURED DATA-~CHORD
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The composite blada and the baseline blade differ in physical
properties whirn also affect locads. The difference is displayed
in Figures 11{ 31d 111. At 3tation 60 the flap bending factor
kf, for the c¢'.'wsite blade is 2300/2580 or .89 and the chord
moment § actor, kc, is 39400/36700 or 1.07.

The design fatigue loads therefore are calculated as £2llows:

3200
3000 * N2 X K¢ o

Design Loads = (OH-58 Load at airspeed) x

"yad -ateé for loed factors less than 1.0 g were not available

r the O'-58 blade. Inruitively it seemed reasonable to expect
s-7ilar lc.dirqg for equal increments of positive and negative
-4 f=vtes . Yo gain confidence in this hypothesis a review of
" 1H-61A 1 -zt 2ad flight blade loads data (Reference 16) was
vo.ducter =c¢ all air speeds and altitudes, both flap and
chord be...t.ig data consistantly displayed the same or higher
inzremental alternating loads per increment of positive load
factor, then for an equal increment of negative load factor.

Therefore for those conditions where Nz < 0.8, the loads shall
be the sair2 as those for Nz = 2.0 - Nz (e.g. for a flight
condition of Nz = 0.2 g's, the loads fo:" Nz = 1.8 g's will

be used).

The design loads for the V
60 are shown in Table 38.

y Maneuver flight profile at Station

The loads due to unsymmetrical maneuvers, autorotation, pull-
ups, etc., were examined (Reference i3) and were found to be
less critical than the loads assumed by linear load growth
versus load factor shown in Takle 38. Therefore, these con-
ditions are contained in the maneuver VH load profi’e presented
in this table.

The loads for sidewards/rearward flight and for the control
reversal conditions are shown in Table 39. These loads shown
result from the maximum measured loads of Reference 13 modified
for the gross weight and configuration differences as noted
before. Ground-air-ground loads were examined and found to

be uncritical and nondamaging.

Span steady flap bending moments are plotted in Figure 1ll2.
Since the composite blade has a lower bending stiffness, the
lower steady moments are antlicipated. However, the higher loads
will be used in the analysis for conservatism. The steady
chordwise moments shown in Figure 113 reflect the influence of

16. YUH-61lA HELICOPTER FLIGHT LOADS SURVEY REPORT, Contract
DAAJ01~-72~C-0007 (PGA}, Boeing Vertol Company, T179-
10142-2,
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Condition Chord BM | Flap BM
Sideward Flight 17030 1220
Rearward Flight 14580 1030
Control Reversuals
Hover Ioong. 16300 465
Lat 8010 365
Dir 6410 425
VH Long. 22800 2220
Lat 27290 2165
Dir 14230 1685
Auto Long. 7720 1185
Rotational Lat 16460 1010
Dir 4380 805
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Steady Chord Bending Moment
Spanwise Distribution

BLADE STATION (IN.)

Figure 113,




the furiher-aft neutral axis of the composite blade. Again
for conservatism, the higher of the two is used for design
substantiation. Centrifugal force is shown in Figure 114.

Life versus endurance limit trends have been calculated using
the flight profile (Table 36), the fatigue loads (Table 38}
and the fatigue curve shapes for S-Glass and Kevlar 49
(Figure 115). The plots of lifz versus endurance limit are
shown in Figure 116. A design fatigue load factor of 1.25

is chosen for both materials and loading modes.

4.7.4 Failsafety

The primary means of attaining fail-safety in the OH-58 C/A
composite blade is by the proven soft failure mode of fiber-
glass. For the primary blade section and blade retention at
the pin wrap, it is anticipated that unidirectional Kevlar
will prove to have a similar soft failure mode.

All weights located within the spar are bonded with a
mechanical backup system. The teeter weight canister and

the inertia weights can be retained by the wedging action of
the tapered spar at the tip. The mid-span turning weights are
provided with a fiberglass stop juast outboard of the weights.

The sweep balance wzaights are ret: .ned by three lugs, only
two of which are required to retain the weights.

The tip gsection iz bonded to the main blade assembly and
provided with two through mechanical fasteners for rciundancy.

Cracks in the &aft fairing will propagate, at the 45° bias of
the material, ending at the spar heel. The only nonredundant
area is the bond of the aft fairing to the spar heel. However,
Boeing Vertol composite blades built in this manner have

never incurred a failure.

4.7.5 §Stress Analyses

The fcllowing stress analyses are presented to substantiate
structural integrity in sufficient detail to confirm the
feasibility of the design concepts.

4.7.5.1 Basic Airfoil Section

The basic airfoii section extends from Station 8¢ outboard to
the tip. Fxom Station 80 inboard to Station 53, unidirectional
Kevlar is added to the trailing-edge wedge to increase the
chordwise stiffness. This results in an aftward shift in the
neutral axis and a repid increase in cherd moment due to the
increase C.F. offset. From Station 53 inboard, the spar packs
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are increased for flapwise stiffness and strength to attain
i the material required for a positive structural margin at the
retaining pin.

Two blade sections are examined for strength. Station 53 is
checked for the static limit load cases. Station 60 is

checked for fatigue, conservatively, using Station 80 properties
(i.e., no TE buildup) and Station 60 loads. The upper surface
of the spar is analyzed for the effects of local pressure

which causes stresses transverse to the primary direction of
the spar pack filaments.

The aft fairing is a full-depth sandwich wedge extending aft
of the spar heel at 42% chord. The core and faces are analy-
zed for the net upper and lower surface steady and alternating
loads.

Large margins of safety are calculated for static strength
and for the 3600-hour fatigue requirement, using the conser-
vative methods and assumptions previously stated. Based on
the margins calculated, an unlimited life of the basic blade
section is anticipated.

4,7.5.2 2lade Retention Area

The blade +«s attached to the hub in the same manner as the
baselire OH-58 blade. The flap bending moment and centrifugal
force loads are reacted at the main pin through the pin wrap ;
of S-Glass material that builds up from the upper and lower .
spar packs. The chord bending moment is reacted as a couple ’
between the latches and the main retention pin. The Kevlar 49
nose and heel material is extended inboard of the main pin to
the blade latch at Station 12.5.

The large margins of safety for the fatigue conditions
indicate a probable unlimited life. The relatively low
margins of safety for the ultimate loads result from the low
compression strength of Kevlar 49. These strengths are
derived from small coupon tests. Bending strengths of large
thick sections have historically shown higher strengths in
tests of composite materials.
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5.0 CONCLUSICNS

Most of the features desired in a composite replacement
blade can be attained. Among them are compatibility with
existing hardware, and the objectives stipulated for
structures, dynamics, performance, reliability and main-
tainability, and survivability. A 6% reduction in hover
power required can be attained without a significant re-
duction in forward flight performance. All areas of the
blade are invulnerable to the defined ballistic threats.

Some of the desired features can be achieved in part.
Among them are the cost and the radar reflectivity ob-
jectives. It is felt that the $3400/blade recurring cost
is unachievable, but a life cycle cost saving, based on a
realistic blade cost, can be achieved by increasing the
planned service period beyond the projected 10 year period
or with an increase in the projected 13 hours/month utili-
zation rate. A considerable improvement can be achieved
in radar cross section (RCS), approaching, but falling
short of, the desired levels.

The selected blade concept does not include some of the
desired features. Among them are increased rotor inertia,
and the least risk approach of matching all existing blade
physical properties, without sacrificing the other desired
ocbjentives. An increase in rotor inertia is limited by
reduced fatigue life of the tie bar assembly. Matching
all existing blade physical properties is the lowest risk
approach, but it requires extensive use of graphite, which
adds to the cost, reduces reliability and maintainability,
and prohibits any improvement in radar reflectivity.

Although the radar reflectivity objectives are nearly
achievable, their inclusion significantly influences the
choice of the design concept, sacrificing other objectives

to a limited extent. Consideration should be given to
retaining this requirement in the production proposal based
on how much RCS significant improvement is to be accomplished
on the rest of the helicopter, particularly on the hub, and
what an improved RCS blade will mean to the total aircraft
RCS.

A dsvelopment program is recommended for the Estane/
pneumatic leading edge boot. This should include an
erosion test to verify the 1200-flight-hour requirement
and functional testing to resolve any problems which may
result from using this system on a helicopter rotor blade.
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0012 Baseline Data Corrected to Turbulence Level of VR-7/VR-8
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